Contenido principal del artículo

Enrique Richard
Cristhian Vinces Vergara
Karol Gutiérrez Pino

Los microplásticos (MP) se han convertido en una fuente de contaminación importante para el ambiente y consecuentemente para el ser humano. Estos polímeros están presentes en el día a día de todos, desde el agua que bebemos hasta los alimentos que ingerimos. Sin embargo, la información sobre los posibles efectos de los MP en la salud humana es limitada, sobre todo en relación a poblaciones consideradas vulnerable como lo son las mujeres embarazadas, lo que supondría un alto riesgo para el feto. El objetivo de este estudio se centró en investigar la incidencia de los MP en la salud materna y fetal. Se realizó una revisión bibliográfica de artículos científicos en Google Scholar. Los resultados se enfocaron en el impacto que tienen los MP en la salud fetal y en la salud materna por separado, complementariamente se tomó en cuenta ensayos realizados en animales de laboratorio. La información obtenida muestra la presencia de MP en componentes humanos maternos como líquido amniótico, endometrio y placenta. La exposición a MP puso en evidencia un riesgo tanto para las gestantes, las cuales desarrollaron alteraciones a nivel metabólico, celular, endocrino y cardiovascular, como para los fetos. En estos, se determinó que los MP hallados en el hígado, riñones, corazón y cerebro, desencadenan en trastornos metabólicos, toxicidad sistémica, restricción del crecimiento fetal y alteraciones a nivel neurológico.

Microplastics (MP) have become a significant source of environmental pollution and consequently affect human beings. These polymers are present in everyday life, from the water we drink to the food we consume. However, information about the potential effects of MP on human health is limited, especially regarding vulnerable populations, such as pregnant women, which could pose a high risk to the fetus. The aim of this study was to investigate the impact of MP on maternal and fetal health. A literature review of scientific articles on Google Scholar was conducted. Gray literature and duplicate articles were excluded. The results focused on the impact of MP on fetal health and maternal health separately, and additionally considered studies conducted on laboratory animals. The information obtained shows the presence of MP in maternal human components such as amniotic fluid, endometrium, and placenta, even when samples had no exogenous contact, in operating rooms or laboratories. MP exposure revealed a risk for pregnant women, who developed metabolic, cellular, endocrine, and cardiovascular alterations, as well as for fetuses. In fetuses, MPs found in the liver, kidneys, heart, and brain were associated with metabolic disorders, systemic toxicity, fetal growth restriction, and neurological alterations.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Richard, E. ., Vinces Vergara, C. ., & Gutiérrez Pino, K. . (2025). Microplásticos y su incidencia en la salud materna y fetal. Revista Vive, 8(23), 710–732. https://doi.org/10.33996/revistavive.v8i23.407
Sección
INVESTIGACIONES
Referencias

Leslie H, Depledge M. Where is the evidence that human exposure to microplastics is safe? Environ Int. 2020; 142:105807. https://doi.org/10.1016/j.envint.2020.105807

Vethaak A, Legler J. Microplastics and human health. Science. 2021;371(6530):672-4. https://doi.org/10.1126/science.abe5041

Buteler M. ¿Qué es la contaminación por plástico y por qué nos afecta a todos? Repos Inst CONICET. 2019;16(28). https://ri.conicet.gov.ar/handle/11336/109678

Culqui-Sánchez M, Villacis-Barrazueta J, Rosales-Cedeño K. Micro y nanoplasticos y su influencia en la salud humana. Gac Médica Estud. 2024;5(2). https://n9.cl/foqdq

Zettler E, Mincer T, Amaral-Zettler L. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ Sci Technol. 2013;47(13):7137-46. https://doi.org/10.1021/es401288x

Katyal D, Kong E, Villanueva J. Microplastics in the environment: impact on human health and future mitigation strategies. Environ Health Rev. 2020;63(1):27-31. https://doi.org/10.5864/d2020-005

Castañeta G, Gutiérrez A, Nacaratte F. Microplásticos: un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Rev Boliv Quím. 2020;37(3):142-57. https://n9.cl/o9x7b

Prata J. Airborne microplastics: Consequences to human health? Environ Pollut. 2018; 234:115-26. https://doi.org/10.1016/j.envpol.2017.11.043

Walker T, Fequet L. Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAC Trends Anal Chem. 2023; 160:116984. https://doi.org/10.1016/j.trac.2023.116984

Meegoda J, Hettiarachchi M. A Path to a Reduction in Micro and Nanoplastics Pollution. Int J Environ Res Public Health. 2023; 20(8):5555. https://doi.org/10.3390/ijerph20085555

Rabanel J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-Loaded Nanocarriers: Passive Targeting and Crossing of Biological Barriers. Curr Med Chem. 2012;19(19):3070-102. https://doi.org/10.2174/092986712800784702

Rabanel J, Adibnia V, Tehrani S, Sanche S, Hildgen P, Banquy X, et al. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? Nanoscale. 2019;11(2):383-406. https://doi.org/10.1039/c8nr04916e

Stothra S, Nash R, Deegan M, Pagter E, Frías J. Microplastics in the marine environment: Sources, Impacts & Recommendations. Centro de Investigación Marina y de Agua Dulce del Instituto de Tecnología Galway-Mayo; 2021. https://n9.cl/w9cdq

Song X, Du L, Sima L, Zou D, Qiu X. Effects of micro(nano)plastics on the reproductive system: A review. Chemosphere. 2023; 336:139138. https://doi.org/10.1016/j.chemosphere.2023.139138

Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ Res. 2024; 251:118535. https://doi.org/10.1016/j.envres.2024.118535

Gigault J, Pedrono B, Maxit B, Ter Halle A. Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano. 2016; 3(2):346-50. https://doi.org/10.1039/C6EN00008H

Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol. 2017; 51(23):13689-97. https://n9.cl/4l8kv

Hernandez L, Yousefi N, Tufenkji N. Are There Nanoplastics in Your Personal Care Products? Environ Sci Technol Lett. 2017; 4(7):280-5. https://doi.org/10.1021/acs.estlett.7b00187

Yee M, Hii L, Looi C, Lim W, Wong S, Kok Y, et al. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials. 2021; 11(2):496. https://doi.org/10.3390/nano11020496

Montano L, Giorgini E, Notarstefano V, Notari T, Ricciardi M, Piscopo M, et al. Raman Microspectroscopy evidence of microplastics in human semen. Sci Total Environ. 2023; 901:165922. https://doi.org/10.1016/j.scitotenv.2023.165922

Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers. 2022; 14(13):2700. https://doi.org/10.3390/polym14132700

Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, et al. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann Intern Med. 2019; 171(7):453-7. https://doi.org/10.7326/M19-0618

Leslie H, Van Velzen M, Brandsma S, Vethaak A, Garcia-Vallejo J, Lamoree M. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022; 163:107199. https://doi.org/10.1016/j.envint.2022.107199

Pelegrini K, Pereira T, Maraschin T, Teodoro L, Basso N, De Galland G, et al. Micro- and nanoplastic toxicity: A review on size, type, source, and test-organism implications. Sci Total Environ. 2023; 878:162954. https://doi.org/10.1016/j.scitotenv.2023.162954

Waring R, Harris R, Mitchell S. Plastic contamination of the food chain: A threat to human health? Maturitas. 2018; 115:64-8. https://doi.org/10.1016/j.maturitas.2018.06.010

Adhikari K, Pearce C, Sanguinet K, Bary A, Chowdhury I, Eggleston I, et al. Accumulation of microplastics in soil after long-term application of biosolids and atmospheric deposition. Sci Total Environ. 2024; 912:168883. https://doi.org/10.1016/j.scitotenv.2023.168883

Chandrakanthan K, Fraser M, Herckes P. Microplastics are ubiquitous and increasing in soil of a sprawling urban area, Phoenix (Arizona). Sci Total Environ. 2024; 906:167617. https://doi.org/10.1016/j.scitotenv.2023.167617

O’Brien S, Rauert C, Ribeiro F, Okoffo E, Burrows S, O’Brien J, et al. There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Sci Total Environ. 2023; 874:162193. https://doi.org/10.1016/j.scitotenv.2023.162193

Zhao X, Zhou Y, Liang C, Song J, Yu S, Liao G, et al. Airborne microplastics: Occurrence, sources, fate, risks and mitigation. Sci Total Environ. 2023; 858:159943. https://doi.org/10.1016/j.scitotenv.2022.159943

Wang X, Li C, Liu K, Zhu L, Song Z, Li D. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J Hazard Mater. 2020; 389:121846. https://doi.org/10.1016/j.jhazmat.2019.121846

Koelmans A, Mohamed Nor N, Hermsen E, Kooi M, Mintenig S, De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019; 155:410-22. https://doi.org/10.1016/j.watres.2019.02.054

Oßmann B. Microplastics in drinking water? Present state of knowledge and open questions. Curr Opin Food Sci. 2021; 41:44-51. https://doi.org/10.1016/j.cofs.2021.02.011

Piyawardhana N, Weerathunga V, Chen H, Guo L, Huang P, Ranatunga R, et al. Occurrence of microplastics in commercial marine dried fish in Asian countries. J Hazard Mater. febrero de 2022; 423:127093. https://doi.org/10.1016/j.jhazmat.2021.127093

Sewwandi M, Wijesekara H, Rajapaksha A, Soysa S, Vithanage M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. Environ Pollut. 2023; 317:120747. https://doi.org/10.1016/j.envpol.2022.120747

Wright S, Kelly F. Plastic and Human Health: A Micro Issue? Environ Sci Technol. 20 de 2017; 51(12):6634-47. https://doi.org/10.1021/acs.est.7b0042310.1021/acs.est.7b00423.s001

De-la-Torre GE. Microplastics: an emerging threat to food security and human health. J Food Sci Technol. 2020; 57(5):1601-8. https://doi.org/10.1007/s13197-019-04138-1

Landerdahl S, Richardson M, Redekop K, Ehn M, Wamala S. Gray Literature in Evaluating Effectiveness in Digital Health and Health and Welfare Technology: A Source Worth Considering. J Med Internet Res. 2022; 24(3):e29307. https://doi.org/10.2196/29307

Bäuerlein P, Hofman-Caris R, Pieke E, Ter Laak T. Fate of microplastics in the drinking water production. Water Res. 2022; 221:118790. https://doi.org/10.1016/j.watres.2022.118790

Bollaín C, Vicente D. Presencia de microplásticos en aguas y su potencial impacto en la salud pública. Rev Esp Salud Pública. 2019; 93. https://n9.cl/b34vh

Bakan B, Kal?ec N, Liu S, Ili? K, Qi Y, Capjak I, et al. Science-based evidence on pathways and effects of human exposure to micro- and nanoplastics. Arch Ind Hyg Toxicol. 2024;75(1):1-14. https://doi.org/10.2478/aiht-2024-75-3807

Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, Schwabl P, et al. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics. 2021;13(7):921. https://doi.org/10.3390/pharmaceutics13070921

Yu H, Sheen J, Tiao M. The Impact of Maternal Nanoplastic and Microplastic Particle Exposure on Mammal’s Offspring. Cells. 2024; 13(16):1380. https://doi.org/10.3390/cells13161380

Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. Sci Total Environ. 2024; 912:168946. https://doi.org/10.1016/j.scitotenv.2023.168946

Bongaerts E, Nawrot T, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol. 2020; 17(1):56. https://doi.org/10.1186/s12989-020-00386-8

Mercogliano R, Avio C, Regoli F, Anastasio A, Colavita G, Santonicola S. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. J Agric Food Chem. 2020; 68(19):5296-301. https://doi.org/10.1021/acs.jafc.0c01209

Thiele C, Hudson M, Russell A, Saluveer M, Sidaoui-Haddad G. Microplastics in fish and fishmeal: an emerging environmental challenge? Sci Rep. 2021; 11(1):2045. https://doi.org/10.1038/s41598-021-81499-8

Mortensen N, Fennell T, Johnson L. Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources. NanoImpact. 2021; 21:100302. https://doi.org/10.1016/j.impact.2021.100302

Zhou X, Wang J, Li H, Zhang H, Hua-Jiang, Zhang D. Microplastic pollution of bottled water in China. J Water Process Eng. 2021; 40:101884. https://doi.org/10.1016/j.jwpe.2020.101884

Oporto V, Escobar IF, d’Abzac P. Comparación de niveles de microplásticos en el aire de zonas agrícolas y urbanas de la ciudad de Cochabamba, Bolivia. En 2023. 2024. https://doi.org/10.61547/3423

Amato-Lourenço L, Carvalho-Oliveira R, Júnior G, Dos Santos Galvão L, Ando R, Mauad T. Presence of airborne microplastics in human lung tissue. J Hazard Mater. 2021; 416:126124. https://doi.org/10.1016/j.jhazmat.2021.126124

Huang S, Huang X, Bi R, Guo Q, Yu X, Zeng Q, et al. Detection and Analysis of Microplastics in Human Sputum. Environ Sci Technol. 2022; 56(4):2476-86. https://doi.org/10.1021/acs.est.1c03859

Leads R, Weinstein J. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar Pollut Bull. 2019; 145:569-82. https://doi.org/10.1016/j.marpolbul.2019.06.061

Guerranti C, Martellini T, Perra G, Scopetani C, Cincinelli A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ Toxicol Pharmacol. 2019; 68:75-9. https://doi.org/10.1016/j.etap.2019.03.007

Sun Q, Ren S, Ni H. Incidence of microplastics in personal care products: An appreciable part of plastic pollution. Sci Total Environ. 2020; 742:140218. https://doi.org/10.1016/j.scitotenv.2020.140218

Khan A, Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience. 2023; 26(2):106061. https://doi.org/10.1016/j.isci.2023.106061

Sun A, Wang W. Differentiation of cellular responses to particulate and soluble constituents in sunscreen products. J Hazard Mater. 2024; 474:134791. https://doi.org/10.1016/j.jhazmat.2024.134791

Amereh F, Amjadi N, Mohseni-Bandpei A, Isazadeh S, Mehrabi Y, Eslami A, et al. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ Pollut. 2022; 314:120174. https://doi.org/10.1016/j.envpol.2022.120174

Ragusa A, Matta M, Cristiano L, Matassa R, Battaglione E, Svelato A, et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int J Environ Res Public Health. 2022;19(18):11593. https://doi.org/10.3390/ijerph191811593

Weingrill R, Lee M, Benny P, Riel J, Saiki K, Garcia J, et al. Temporal trends in microplastic accumulation in placentas from pregnancies in Hawai?i. Environ Int. 2023; 180:108220. https://doi.org/10.1016/j.envint.2023.108220

Halfar J, ?abanová K, Vávra K, Delongová P, Motyka O, Špa?ek R, et al. Microplastics and additives in patients with preterm birth: The first evidence of their presence in both human amniotic fluid and placenta. Chemosphere. 2023; 343:140301. https://doi.org/10.1016/j.chemosphere.2023.140301

Xue J, Xu Z, Hu X, Lu Y, Zhao Y, Zhang H. Microplastics in maternal amniotic fluid and their associations with gestational age. Sci Total Environ. 2024; 920:171044. https://doi.org/10.1016/j.scitotenv.2024.171044

Qin X, Cao M, Peng T, Shan H, Lian W, Yu Y, et al. Features, Potential Invasion Pathways, and Reproductive Health Risks of Microplastics Detected in Human Uterus. Environ Sci Technol. 18 de junio de 2024;58(24):10482-93. Disponible en: https://doi.org/10.1021/acs.est.4c01541

Deryabin P, Borodkina A. The Role of the Endometrium in Implantation: A Modern View. Int J Mol Sci. 2024; 25(17):9746. https://doi.org/10.3390/ijms25179746

Hougaard K, Hannerz H, Feveile H, Bonde J. Increased incidence of infertility treatment among women working in the plastics industry. Reprod Toxicol. 2009;27(2):186-9. https://doi.org/10.1016/j.reprotox.2009.01.003

Yu K, Huang Z, Xu X, Li J, Fu X, Deng S. Estrogen Receptor Function: Impact on the Human Endometrium. Front Endocrinol. 2022; 13:827724. https://doi.org/10.3389/fendo.2022.827724

Zhang P, Wang G. Progesterone Resistance in Endometriosis: Current Evidence and Putative Mechanisms. Int J Mol Sci. 2023; 24(8):6992. https://doi.org/10.3390/ijms24086992

García-Gómez E, Vázquez-Martínez E, Reyes-Mayoral C, Cruz-Orozco O, Camacho-Arroyo I, Cerbón M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front Endocrinol. 2020; 10:935. https://doi.org/10.3389/fendo.2019.00935

Hon J, Wahab N, Karim A, Mokhtar N, Mokhtar M. MicroRNAs in Endometriosis: Insights into Inflammation and Progesterone Resistance. Int J Mol Sci. 2023;24(19):15001. https://doi.org/10.3390/ijms241915001

Nothnick W. MicroRNAs and Progesterone Receptor Signaling in Endometriosis Pathophysiology. Cells. 2022;11(7):1096. https://doi.org/10.3390/cells11071096

Pombo M, Castro L, Barreiro J, Canabas P. Una revisión sobre los disruptores endocrinos y su posible impacto sobre la salud de los humanos. Rev Esp Endocrinol Pediátrica. 2020;(11). https://doi.org/10.3266/RevEspEndocrinolPediatr.pre2020.Nov.619

Tamayo F, Agaméz J, Aparicio D, Márquez J. Bisfenol a y efectos de disrupción endocrina en humanos y animales: Revisión sistemática: Rev Investig Agrar Ambient. 2022;13(2):175-200. https://doi.org/10.22490/21456453.4691

Stavridis K, Triantafyllidou O, Pisimisi M, Vlahos N. Bisphenol-A and Female Fertility: An Update of Existing Epidemiological Studies. J Clin Med. 2022;11(23):7227. https://doi.org/10.3390/jcm11237227

Gao Z, Liu S, Tan L, Gao X, Fan W, Ding C, et al. Testicular toxicity of bisphenol compounds: Homeostasis disruption of cholesterol/testosterone via PPAR? activation. Sci Total Environ. 2022; 836:155628. https://doi.org/10.1016/j.scitotenv.2022.155628

Li C, Zhang L, Ma T, Gao L, Yang L, Wu M, et al. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling. Chemosphere. 2021; 263:128020. https://doi.org/10.1016/j.chemosphere.2020.128020

Pathak R, Jung D, Shin S, Ryu B, Lee H, Kim J. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. J Hazard Mater. 2024; 469:133935. https://doi.org/10.1016/j.jhazmat.2024.133935

Zhang C, Luo Y, Qiu S, Huang X, Jin K, Li J, et al. Associations between urinary concentrations of bisphenols and serum concentrations of sex hormones among US. Males. Environ Health. 2022;21(1):135. https://doi.org/10.1186/s12940-022-00949-6

Li J, Zhang W, Zhao H, Zhou Y, Xu S, Li Y, et al. Trimester-specific, gender-specific, and low-dose effects associated with non-monotonic relationships of bisphenol A on estrone, 17?-estradiol and estriol. Environ Int. 2020; 134:105304. https://doi.org/10.1016/j.envint.2019.105304

Pollock T, Arbuckle T, Guth M, Bouchard M, St-Amand A. Associations among urinary triclosan and bisphenol A concentrations and serum sex steroid hormone measures in the Canadian and U.S. Populations. Environ Int. 2021; 146:106229. https://doi.org/10.1016/j.envint.2020.106229

Li Z, Chen C, Ying P, Ji-jun G, Lian-jie D, Dan H, et al. Bisphenol A and its analogue bisphenol S exposure reduce estradiol synthesis via the ROS-mediated PERK/ATF4 signaling pathway. Food Chem Toxicol. 2023; 182:114179. https://doi.org/10.1016/j.fct.2023.114179

Iwamoto M, Masuya T, Hosose M, Tagawa K, Ishibashi T, Suyama K, et al. Bisphenol A derivatives act as novel coactivator-binding inhibitors for estrogen receptor ?. J Biol Chem. 2021;297(5):101173. https://doi.org/10.1016/j.jbc.2021.101173

Pelch KE, Li Y, Perera L, Thayer KA, Korach KS. Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles. Toxicol Sci. 2019;172(1):23-37. https://doi.org/10.1093/toxsci/kfz173

Zheng J, Chen S, Lu H, Xia M, Wang S, Li X, et al. Enhanced inhibition of human and rat aromatase activity by benzene ring substitutions in bisphenol A: QSAR structure-activity relationship and in silico docking analysis. J Hazard Mater. 2024; 465:133252. https://doi.org/10.1016/j.jhazmat.2023.133252

Xu H, Zhang X, Ye Y, Li X. Bisphenol A affects estradiol metabolism by targeting CYP1A1 and CYP19A1 in human placental JEG-3 cells. Toxicol In Vitro. 2019; 61:104615. https://doi.org/10.1016/j.tiv.2019.104615

Hwang W, Lee T, Kim N, Kwon J. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int J Mol Sci. 2020; 22(1):373. https://doi.org/10.3390/ijms22010373

Mandalà M. Influence of Estrogens on Uterine Vascular Adaptation in Normal and Preeclamptic Pregnancies. Int J Mol Sci. 2020; 21(7):2592. https://doi.org/10.3390/ijms21072592

Shu C, Han S, Xu P, Wang Y, Cheng T, Hu C. Estrogen and Preeclampsia: Potential of Estrogens as Therapeutic Agents in Preeclampsia. Drug Des Devel Ther. 2021;15:2543-50. https://doi.org/10.2147/DDDT.S304316

Tang Z, Xu X, Deng S, Lian Z, Yu K. Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int J Mol Sci. 2020;21(4):1519. https://doi.org/10.3390/ijms21041519

Dusza H, Van Boxel J, Van Duursen M, Forsberg M, Legler J, Vähäkangas K. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. Sci Total Environ. 2023; 860:160403. https://doi.org/10.1016/j.scitotenv.2022.160403

Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479-96. https://doi.org/10.1007/s00018-019-03104-6

Plitman R, Abbas Y, Charnock-Jones D, Burton G, Marom G. Three-dimensional morphological analysis of placental terminal villi. Interface Focus. 2019;9(5):20190037. https://doi.org/10.1098/rsfs.2019.0037

Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci Total Environ. 2023; 856:159060. https://doi.org/10.1016/j.scitotenv.2022.159060

Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021; 146:106274. https://doi.org/10.1039/C8NR04916E

Fournier S, D’Errico J, Adler D, Kollontzi S, Goedken M, Fabris L, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol. 2020;17(1):55. https://doi.org/10.1186/s12989-020-00385-9

Bai C, Wang D, Luan Y, Huang S, Liu L, Guo Y. A review on micro- and nanoplastics in humans: Implication for their translocation of barriers and potential health effects. Chemosphere. 2024; 361:142424. https://doi.org/10.1016/j.chemosphere.2024.142424

Furukawa S, Tsuji N, Sugiyama A. Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol. 2019;32(1):1-17. https://doi.org/10.1293/tox.2018-0042

Cary C, DeLoid G, Yang Z, Bitounis D, Polunas M, Goedken M, et al. Ingested Polystyrene Nanospheres Translocate to Placenta and Fetal Tissues in Pregnant Rats: Potential Health Implications. Nanomaterials. 2023;13(4):720. https://doi.org/10.3390/nano13040720

Alva R, Wiebe J, Stuart J. Revisiting reactive oxygen species production in hypoxia. Pflüg Arch - Eur J Physiol. 2024;476(9):1423-44. https://doi.org/10.1007/s00424-024-02986-1

Hu J, Qin X, Zhang J, Zhu Y, Zeng W, Lin Y, et al. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod Toxicol. 2021; 106:42-50. https://doi.org/10.1016/j.reprotox.2021.10.002

Das A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci Total Environ. 2023; 895:165076. https://doi.org/10.1016/j.scitotenv.2023.165076

Ortiz J, Medina M. Estrés oxidativo ¿un asesino silencioso? Educ Quím. 2020; 31(1):2. https://doi.org/10.22201/fq.18708404e.2020.1.69709

Bai J, Wang Y, Deng S, Yang Y, Chen S, Wu Z. Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1?/JNK axis induced apoptosis and endoplasmic reticulum stress. Part Fibre Toxicol. 2024;21(1):36. https://doi.org/10.1186/s12989-024-00595-5

Dibbon K, Mercer G, Maekawa A, Hanrahan J, Steeves K, Ringer L, et al. Polystyrene micro- and nanoplastics cause placental dysfunction in mice. Biol Reprod. 2024;110(1):211-8. https://doi.org/10.1093/biolre/ioad126

Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta BBA - Mol Basis Dis. 2020;1866(2):165373. https://doi.org/10.1016/j.bbadis.2018.12.024

Zhang R, Feng Y, Nie P, Wang W, Wu H, Wan X, et al. Polystyrene microplastics disturb maternal glucose homeostasis and induce adverse pregnancy outcomes. Ecotoxicol Environ Saf. 2024; 279:116492. https://doi.org/10.1016/j.ecoenv.2024.116492

Bakrania B, Spradley F, Drummond H, LaMarca B, Ryan M, Granger J. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. En: Terjung R, editor. Comprehensive Physiology. 1.a ed. Wiley; 2020. 1315-49. https://doi.org/10.1002/cphy.c200008

Huynh K. Presence of microplastics in carotid plaques linked to cardiovascular events. Nat Rev Cardiol. 2024;21(5):279-279. https://doi.org/10.1038/s41569-024-01015-z

Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N Engl J Med. 2024;390(10):900-10. https://doi.org/10.1056/NEJMoa2309822

Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, et al. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol. 2020;92:14-56. https://doi.org/10.1016/j.reprotox.2019.04.004

Caballero-Flores G, Pickard J, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol. 2023;21(6):347-60. https://doi.org/10.1038/s41579-022-00833-7

Garza-Velasco R, Garza-Manero S, Perea-Mejía L. Microbiota intestinal: aliada fundamental del organismo humano. Gut microbiota: our fundamental allied. Educ Quím. de 2021;32(1):10. https://doi.org/10.22201/fq.18708404e.2021.1.75734

Wardman J, Bains R, Rahfeld P, Withers S. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 2022;20(9):542-56. https://doi.org/10.1038/s41579-022-00712-1

Álvarez J, Fernández J, Guarner F, Gueimonde M, Rodríguez J, Saenz M, et al. Microbiota intestinal y salud. Gastroenterol Hepatol. 2021;44(7):519-35. https://doi.org/10.1016/j.gastrohep.2021.01.009

Dahl W, Rivero D, Lambert J. Diet, nutrients and the microbiome. En: Progress in Molecular Biology and Translational Science. Elsevier; 2020. 237-63. https://doi.org/10.1016/bs.pmbts.2020.04.006

Laursen M, Bahl M, Licht T. Settlers of our inner surface – factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol Rev. 2021;45(4): https://doi.org/10.1093/femsre/fuab001

Fishbein S, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol. 2023;21(12):772-88. https://doi.org/10.1038/s41579-023-00933-y

Nissen L, Spisni E, Spigarelli R, Casciano F, Valerii M, Fabbri E, et al. Single exposure of food-derived polyethylene and polystyrene microplastics profoundly affects gut microbiome in an in vitro colon model. Environ Int. 2024; 190:108884. https://doi.org/10.1016/j.envint.2024.108884

Souza-Silva T, Oliveira I, Silva G, Giusti F, Novaes R, Paula H. Impact of microplastics on the intestinal microbiota: A systematic review of preclinical evidence. Life Sci. 2022; 294:120366. https://doi.org/10.1016/j.lfs.2022.120366

Tamargo A, Molinero N, Reinosa J, Alcolea-Rodriguez V, Portela R, Bañares M, et al. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep. 2022;12(1):528. https://doi.org/10.1038/s41598-021-04489-w

Lee S, Lin W, Cheng T. Microbiota-mediated metabolic perturbations in the gut and brain of mice after microplastic exposure. Chemosphere. 2024; 350:141026. https://n9.cl/sqek6a

Qiao J, Chen R, Wang M, Bai R, Cui X, Liu Y, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale. 2021;13(19):8806-16. https://doi.org/10.1039/D1NR00038A

Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y. Maternal Polystyrene Microplastic Exposure during Gestation and Lactation Altered Metabolic Homeostasis in the Dams and Their F1 and F2 Offspring. Environ Sci Technol. 2019;53(18):10978-92. https://doi.org/10.1021/acs.est.9b03191

Macià M, Del Pozo J, Díez-Aguilar M, Guinea J. Diagnóstico microbiológico de las infecciones relacionadas con la formación de biopelículas. Enfermedades Infecc Microbiol Clínica. 2018; 36(6):375-81. https://doi.org/10.1016/j.eimc.2017.04.006

Gorczyca K, Obuchowska A, Kimber-Trojnar ?, Wierzchowska-Opoka M, Leszczy?ska-Gorzelak B. Changes in the Gut Microbiome and Pathologies in Pregnancy. Int J Environ Res Public Health. 2022; 19(16):9961. https://doi.org/10.3390/ijerph19169961

Ali M, Ahmed M, Memon M, Chandio F, Shaikh Q, Parveen A, et al. Preeclampsia: A comprehensive review. Clin Chim Acta. 2024; 563:119922. https://doi.org/10.1016/j.cca.2024.119922

Torres-Torres J, Espino-y-Sosa S, Martinez-Portilla R, Borboa-Olivares H, Estrada-Gutierrez G, Acevedo-Gallegos S, et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int J Mol Sci. 2024; 25(14):7569. https://doi.org/10.3390/ijms25147569

Huang L, Thonusin C, Chattipakorn N, Chattipakorn S. Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review. Eur J Nutr. 2021; 60(5):2343-60. https://doi.org/10.1007/s00394-021-02483-6

Ionescu R, Enache R, Cretoiu S, Gaspar B. Gut Microbiome Changes in Gestational Diabetes. Int J Mol Sci. 2022; 23(21):12839. https://doi.org/10.3390/ijms232112839

Aghaei Z, Sled J, Kingdom J, Baschat A, Helm P, Jobst K, et al. Maternal Exposure to Polystyrene Micro- and Nanoplastics Causes Fetal Growth Restriction in Mice. Environ Sci Technol Lett. 2022; 9(5):426-30. https://doi.org/10.1021/acs.estlett.2c00186

Chen G, Xiong S, Jing Q, Van Gestel C, Van Straalen N, Roelofs D, et al. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci Total Environ. 2023; 854:158666. https://doi.org/10.1016/j.scitotenv.2022.158666

Jeong B, Baek JY, Koo J, Park S, Ryu Y, Kim K, et al. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. J Hazard Mater. 2022; 426:127815. https://doi.org/10.1016/j.jhazmat.2021.127815

Tian L, Zhang Y, Chen J, Liu X, Nie H, Li K, et al. Effects of nanoplastic exposure during pregnancy and lactation on neurodevelopment of rat offspring. J Hazard Mater. 2024; 474:134800. https://doi.org/10.1016/j.jhazmat.2024.134800

Dusza H, Katrukha E, Nijmeijer S, Akhmanova A, Vethaak A, Walker D, et al. Uptake, Transport, and Toxicity of Pristine and Weathered Micro- and Nanoplastics in Human Placenta Cells. Environ Health Perspect. 2022; 130(9):097006. https://doi.org/10.1289/EHP10873

Yong C, Valiyaveettil S, Tang B. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int J Environ Res Public Health. 2020; 17(5):1509. https://doi.org/10.3390/ijerph17051509

Moreno G, Brunson-Malone T, Adams S, Nguyen C, Seymore T, Cary C, et al. Identification of micro- and nanoplastic particles in postnatal sprague-dawley rat offspring after maternal inhalation exposure throughout gestation. Sci Total Environ. 2024; 951:175350. https://doi.org/10.1016/j.scitotenv.2024.175350

Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. https://doi.org/10.1186/s40168-019-0704-8

Martínez R, Jiménez Ortega A, Peral Á, Bermejo L, Rodríguez-Rodríguez E. Importance of nutrition during pregnancy. Impact on the composition of breast milk. Nutr Hosp. 2020; https://doi.org/10.20960/nh.03355

Menjívar L, Herrera A, Tario C, Abrego K. Uso de mioinositol y otros suplementos nutricionales para prevención primaria de la diabetes mellitus gestacional. Alerta Rev Científica Inst Nac Salud. 2024;7(2):169-76. https://doi.org/10.5377/alerta.v7i2.16527

Zhang Y, Tian L, Chen J, Liu X, Li K, Liu H, et al. Selective bioaccumulation of polystyrene nanoplastics in fetal rat brain and damage to myelin development. Ecotoxicol Environ Saf. 2024; 278:116393. https://doi.org/10.1016/j.ecoenv.2024.116393

Duncan I, Marik R, Broman A, Heidari M. Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proc Natl Acad Sci. 2017;114(45). https://doi.org/10.1073/pnas.1714183114

Gerevich Z, Kovács R, Liotta A, Hasam-Henderson L, Weh L, Wallach I, et al. Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study. J Cereb Blood Flow Metab. 2023;43(9):1571-87. https://doi.org/10.1177/0271678X231170746

Gong Z, Bilgel M, Kiely M, Triebswetter C, Ferrucci L, Resnick S, et al. Lower myelin content is associated with more rapid cognitive decline among cognitively unimpaired individuals. Alzheimers Dement. 2023;19(7):3098-107. https://doi.org/10.1002/alz.12968

Kato D, Wake H, Lee P, Tachibana Y, Ono R, Sugio S, et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia. 2020;68(1):193-210. https://doi.org/10.1002/glia.23713