Microplásticos y su incidencia en la salud materna y fetal
Microplastics and their impacto n maternal and fetal healthContenido principal del artículo
Los microplásticos (MP) se han convertido en una fuente de contaminación importante para el ambiente y consecuentemente para el ser humano. Estos polímeros están presentes en el día a día de todos, desde el agua que bebemos hasta los alimentos que ingerimos. Sin embargo, la información sobre los posibles efectos de los MP en la salud humana es limitada, sobre todo en relación a poblaciones consideradas vulnerable como lo son las mujeres embarazadas, lo que supondría un alto riesgo para el feto. El objetivo de este estudio se centró en investigar la incidencia de los MP en la salud materna y fetal. Se realizó una revisión bibliográfica de artículos científicos en Google Scholar. Los resultados se enfocaron en el impacto que tienen los MP en la salud fetal y en la salud materna por separado, complementariamente se tomó en cuenta ensayos realizados en animales de laboratorio. La información obtenida muestra la presencia de MP en componentes humanos maternos como líquido amniótico, endometrio y placenta. La exposición a MP puso en evidencia un riesgo tanto para las gestantes, las cuales desarrollaron alteraciones a nivel metabólico, celular, endocrino y cardiovascular, como para los fetos. En estos, se determinó que los MP hallados en el hígado, riñones, corazón y cerebro, desencadenan en trastornos metabólicos, toxicidad sistémica, restricción del crecimiento fetal y alteraciones a nivel neurológico.
Microplastics (MP) have become a significant source of environmental pollution and consequently affect human beings. These polymers are present in everyday life, from the water we drink to the food we consume. However, information about the potential effects of MP on human health is limited, especially regarding vulnerable populations, such as pregnant women, which could pose a high risk to the fetus. The aim of this study was to investigate the impact of MP on maternal and fetal health. A literature review of scientific articles on Google Scholar was conducted. Gray literature and duplicate articles were excluded. The results focused on the impact of MP on fetal health and maternal health separately, and additionally considered studies conducted on laboratory animals. The information obtained shows the presence of MP in maternal human components such as amniotic fluid, endometrium, and placenta, even when samples had no exogenous contact, in operating rooms or laboratories. MP exposure revealed a risk for pregnant women, who developed metabolic, cellular, endocrine, and cardiovascular alterations, as well as for fetuses. In fetuses, MPs found in the liver, kidneys, heart, and brain were associated with metabolic disorders, systemic toxicity, fetal growth restriction, and neurological alterations.
Descargas
Detalles del artículo
Leslie H, Depledge M. Where is the evidence that human exposure to microplastics is safe? Environ Int. 2020; 142:105807. https://doi.org/10.1016/j.envint.2020.105807
Vethaak A, Legler J. Microplastics and human health. Science. 2021;371(6530):672-4. https://doi.org/10.1126/science.abe5041
Buteler M. ¿Qué es la contaminación por plástico y por qué nos afecta a todos? Repos Inst CONICET. 2019;16(28). https://ri.conicet.gov.ar/handle/11336/109678
Culqui-Sánchez M, Villacis-Barrazueta J, Rosales-Cedeño K. Micro y nanoplasticos y su influencia en la salud humana. Gac Médica Estud. 2024;5(2). https://n9.cl/foqdq
Zettler E, Mincer T, Amaral-Zettler L. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ Sci Technol. 2013;47(13):7137-46. https://doi.org/10.1021/es401288x
Katyal D, Kong E, Villanueva J. Microplastics in the environment: impact on human health and future mitigation strategies. Environ Health Rev. 2020;63(1):27-31. https://doi.org/10.5864/d2020-005
Castañeta G, Gutiérrez A, Nacaratte F. Microplásticos: un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Rev Boliv Quím. 2020;37(3):142-57. https://n9.cl/o9x7b
Prata J. Airborne microplastics: Consequences to human health? Environ Pollut. 2018; 234:115-26. https://doi.org/10.1016/j.envpol.2017.11.043
Walker T, Fequet L. Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAC Trends Anal Chem. 2023; 160:116984. https://doi.org/10.1016/j.trac.2023.116984
Meegoda J, Hettiarachchi M. A Path to a Reduction in Micro and Nanoplastics Pollution. Int J Environ Res Public Health. 2023; 20(8):5555. https://doi.org/10.3390/ijerph20085555
Rabanel J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-Loaded Nanocarriers: Passive Targeting and Crossing of Biological Barriers. Curr Med Chem. 2012;19(19):3070-102. https://doi.org/10.2174/092986712800784702
Rabanel J, Adibnia V, Tehrani S, Sanche S, Hildgen P, Banquy X, et al. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? Nanoscale. 2019;11(2):383-406. https://doi.org/10.1039/c8nr04916e
Stothra S, Nash R, Deegan M, Pagter E, Frías J. Microplastics in the marine environment: Sources, Impacts & Recommendations. Centro de Investigación Marina y de Agua Dulce del Instituto de Tecnología Galway-Mayo; 2021. https://n9.cl/w9cdq
Song X, Du L, Sima L, Zou D, Qiu X. Effects of micro(nano)plastics on the reproductive system: A review. Chemosphere. 2023; 336:139138. https://doi.org/10.1016/j.chemosphere.2023.139138
Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ Res. 2024; 251:118535. https://doi.org/10.1016/j.envres.2024.118535
Gigault J, Pedrono B, Maxit B, Ter Halle A. Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano. 2016; 3(2):346-50. https://doi.org/10.1039/C6EN00008H
Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol. 2017; 51(23):13689-97. https://n9.cl/4l8kv
Hernandez L, Yousefi N, Tufenkji N. Are There Nanoplastics in Your Personal Care Products? Environ Sci Technol Lett. 2017; 4(7):280-5. https://doi.org/10.1021/acs.estlett.7b00187
Yee M, Hii L, Looi C, Lim W, Wong S, Kok Y, et al. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials. 2021; 11(2):496. https://doi.org/10.3390/nano11020496
Montano L, Giorgini E, Notarstefano V, Notari T, Ricciardi M, Piscopo M, et al. Raman Microspectroscopy evidence of microplastics in human semen. Sci Total Environ. 2023; 901:165922. https://doi.org/10.1016/j.scitotenv.2023.165922
Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers. 2022; 14(13):2700. https://doi.org/10.3390/polym14132700
Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, et al. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann Intern Med. 2019; 171(7):453-7. https://doi.org/10.7326/M19-0618
Leslie H, Van Velzen M, Brandsma S, Vethaak A, Garcia-Vallejo J, Lamoree M. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022; 163:107199. https://doi.org/10.1016/j.envint.2022.107199
Pelegrini K, Pereira T, Maraschin T, Teodoro L, Basso N, De Galland G, et al. Micro- and nanoplastic toxicity: A review on size, type, source, and test-organism implications. Sci Total Environ. 2023; 878:162954. https://doi.org/10.1016/j.scitotenv.2023.162954
Waring R, Harris R, Mitchell S. Plastic contamination of the food chain: A threat to human health? Maturitas. 2018; 115:64-8. https://doi.org/10.1016/j.maturitas.2018.06.010
Adhikari K, Pearce C, Sanguinet K, Bary A, Chowdhury I, Eggleston I, et al. Accumulation of microplastics in soil after long-term application of biosolids and atmospheric deposition. Sci Total Environ. 2024; 912:168883. https://doi.org/10.1016/j.scitotenv.2023.168883
Chandrakanthan K, Fraser M, Herckes P. Microplastics are ubiquitous and increasing in soil of a sprawling urban area, Phoenix (Arizona). Sci Total Environ. 2024; 906:167617. https://doi.org/10.1016/j.scitotenv.2023.167617
O’Brien S, Rauert C, Ribeiro F, Okoffo E, Burrows S, O’Brien J, et al. There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Sci Total Environ. 2023; 874:162193. https://doi.org/10.1016/j.scitotenv.2023.162193
Zhao X, Zhou Y, Liang C, Song J, Yu S, Liao G, et al. Airborne microplastics: Occurrence, sources, fate, risks and mitigation. Sci Total Environ. 2023; 858:159943. https://doi.org/10.1016/j.scitotenv.2022.159943
Wang X, Li C, Liu K, Zhu L, Song Z, Li D. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J Hazard Mater. 2020; 389:121846. https://doi.org/10.1016/j.jhazmat.2019.121846
Koelmans A, Mohamed Nor N, Hermsen E, Kooi M, Mintenig S, De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019; 155:410-22. https://doi.org/10.1016/j.watres.2019.02.054
Oßmann B. Microplastics in drinking water? Present state of knowledge and open questions. Curr Opin Food Sci. 2021; 41:44-51. https://doi.org/10.1016/j.cofs.2021.02.011
Piyawardhana N, Weerathunga V, Chen H, Guo L, Huang P, Ranatunga R, et al. Occurrence of microplastics in commercial marine dried fish in Asian countries. J Hazard Mater. febrero de 2022; 423:127093. https://doi.org/10.1016/j.jhazmat.2021.127093
Sewwandi M, Wijesekara H, Rajapaksha A, Soysa S, Vithanage M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. Environ Pollut. 2023; 317:120747. https://doi.org/10.1016/j.envpol.2022.120747
Wright S, Kelly F. Plastic and Human Health: A Micro Issue? Environ Sci Technol. 20 de 2017; 51(12):6634-47. https://doi.org/10.1021/acs.est.7b0042310.1021/acs.est.7b00423.s001
De-la-Torre GE. Microplastics: an emerging threat to food security and human health. J Food Sci Technol. 2020; 57(5):1601-8. https://doi.org/10.1007/s13197-019-04138-1
Landerdahl S, Richardson M, Redekop K, Ehn M, Wamala S. Gray Literature in Evaluating Effectiveness in Digital Health and Health and Welfare Technology: A Source Worth Considering. J Med Internet Res. 2022; 24(3):e29307. https://doi.org/10.2196/29307
Bäuerlein P, Hofman-Caris R, Pieke E, Ter Laak T. Fate of microplastics in the drinking water production. Water Res. 2022; 221:118790. https://doi.org/10.1016/j.watres.2022.118790
Bollaín C, Vicente D. Presencia de microplásticos en aguas y su potencial impacto en la salud pública. Rev Esp Salud Pública. 2019; 93. https://n9.cl/b34vh
Bakan B, Kal?ec N, Liu S, Ili? K, Qi Y, Capjak I, et al. Science-based evidence on pathways and effects of human exposure to micro- and nanoplastics. Arch Ind Hyg Toxicol. 2024;75(1):1-14. https://doi.org/10.2478/aiht-2024-75-3807
Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, Schwabl P, et al. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics. 2021;13(7):921. https://doi.org/10.3390/pharmaceutics13070921
Yu H, Sheen J, Tiao M. The Impact of Maternal Nanoplastic and Microplastic Particle Exposure on Mammal’s Offspring. Cells. 2024; 13(16):1380. https://doi.org/10.3390/cells13161380
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. Sci Total Environ. 2024; 912:168946. https://doi.org/10.1016/j.scitotenv.2023.168946
Bongaerts E, Nawrot T, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol. 2020; 17(1):56. https://doi.org/10.1186/s12989-020-00386-8
Mercogliano R, Avio C, Regoli F, Anastasio A, Colavita G, Santonicola S. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. J Agric Food Chem. 2020; 68(19):5296-301. https://doi.org/10.1021/acs.jafc.0c01209
Thiele C, Hudson M, Russell A, Saluveer M, Sidaoui-Haddad G. Microplastics in fish and fishmeal: an emerging environmental challenge? Sci Rep. 2021; 11(1):2045. https://doi.org/10.1038/s41598-021-81499-8
Mortensen N, Fennell T, Johnson L. Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources. NanoImpact. 2021; 21:100302. https://doi.org/10.1016/j.impact.2021.100302
Zhou X, Wang J, Li H, Zhang H, Hua-Jiang, Zhang D. Microplastic pollution of bottled water in China. J Water Process Eng. 2021; 40:101884. https://doi.org/10.1016/j.jwpe.2020.101884
Oporto V, Escobar IF, d’Abzac P. Comparación de niveles de microplásticos en el aire de zonas agrícolas y urbanas de la ciudad de Cochabamba, Bolivia. En 2023. 2024. https://doi.org/10.61547/3423
Amato-Lourenço L, Carvalho-Oliveira R, Júnior G, Dos Santos Galvão L, Ando R, Mauad T. Presence of airborne microplastics in human lung tissue. J Hazard Mater. 2021; 416:126124. https://doi.org/10.1016/j.jhazmat.2021.126124
Huang S, Huang X, Bi R, Guo Q, Yu X, Zeng Q, et al. Detection and Analysis of Microplastics in Human Sputum. Environ Sci Technol. 2022; 56(4):2476-86. https://doi.org/10.1021/acs.est.1c03859
Leads R, Weinstein J. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar Pollut Bull. 2019; 145:569-82. https://doi.org/10.1016/j.marpolbul.2019.06.061
Guerranti C, Martellini T, Perra G, Scopetani C, Cincinelli A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ Toxicol Pharmacol. 2019; 68:75-9. https://doi.org/10.1016/j.etap.2019.03.007
Sun Q, Ren S, Ni H. Incidence of microplastics in personal care products: An appreciable part of plastic pollution. Sci Total Environ. 2020; 742:140218. https://doi.org/10.1016/j.scitotenv.2020.140218
Khan A, Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience. 2023; 26(2):106061. https://doi.org/10.1016/j.isci.2023.106061
Sun A, Wang W. Differentiation of cellular responses to particulate and soluble constituents in sunscreen products. J Hazard Mater. 2024; 474:134791. https://doi.org/10.1016/j.jhazmat.2024.134791
Amereh F, Amjadi N, Mohseni-Bandpei A, Isazadeh S, Mehrabi Y, Eslami A, et al. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ Pollut. 2022; 314:120174. https://doi.org/10.1016/j.envpol.2022.120174
Ragusa A, Matta M, Cristiano L, Matassa R, Battaglione E, Svelato A, et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int J Environ Res Public Health. 2022;19(18):11593. https://doi.org/10.3390/ijerph191811593
Weingrill R, Lee M, Benny P, Riel J, Saiki K, Garcia J, et al. Temporal trends in microplastic accumulation in placentas from pregnancies in Hawai?i. Environ Int. 2023; 180:108220. https://doi.org/10.1016/j.envint.2023.108220
Halfar J, ?abanová K, Vávra K, Delongová P, Motyka O, Špa?ek R, et al. Microplastics and additives in patients with preterm birth: The first evidence of their presence in both human amniotic fluid and placenta. Chemosphere. 2023; 343:140301. https://doi.org/10.1016/j.chemosphere.2023.140301
Xue J, Xu Z, Hu X, Lu Y, Zhao Y, Zhang H. Microplastics in maternal amniotic fluid and their associations with gestational age. Sci Total Environ. 2024; 920:171044. https://doi.org/10.1016/j.scitotenv.2024.171044
Qin X, Cao M, Peng T, Shan H, Lian W, Yu Y, et al. Features, Potential Invasion Pathways, and Reproductive Health Risks of Microplastics Detected in Human Uterus. Environ Sci Technol. 18 de junio de 2024;58(24):10482-93. Disponible en: https://doi.org/10.1021/acs.est.4c01541
Deryabin P, Borodkina A. The Role of the Endometrium in Implantation: A Modern View. Int J Mol Sci. 2024; 25(17):9746. https://doi.org/10.3390/ijms25179746
Hougaard K, Hannerz H, Feveile H, Bonde J. Increased incidence of infertility treatment among women working in the plastics industry. Reprod Toxicol. 2009;27(2):186-9. https://doi.org/10.1016/j.reprotox.2009.01.003
Yu K, Huang Z, Xu X, Li J, Fu X, Deng S. Estrogen Receptor Function: Impact on the Human Endometrium. Front Endocrinol. 2022; 13:827724. https://doi.org/10.3389/fendo.2022.827724
Zhang P, Wang G. Progesterone Resistance in Endometriosis: Current Evidence and Putative Mechanisms. Int J Mol Sci. 2023; 24(8):6992. https://doi.org/10.3390/ijms24086992
García-Gómez E, Vázquez-Martínez E, Reyes-Mayoral C, Cruz-Orozco O, Camacho-Arroyo I, Cerbón M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front Endocrinol. 2020; 10:935. https://doi.org/10.3389/fendo.2019.00935
Hon J, Wahab N, Karim A, Mokhtar N, Mokhtar M. MicroRNAs in Endometriosis: Insights into Inflammation and Progesterone Resistance. Int J Mol Sci. 2023;24(19):15001. https://doi.org/10.3390/ijms241915001
Nothnick W. MicroRNAs and Progesterone Receptor Signaling in Endometriosis Pathophysiology. Cells. 2022;11(7):1096. https://doi.org/10.3390/cells11071096
Pombo M, Castro L, Barreiro J, Canabas P. Una revisión sobre los disruptores endocrinos y su posible impacto sobre la salud de los humanos. Rev Esp Endocrinol Pediátrica. 2020;(11). https://doi.org/10.3266/RevEspEndocrinolPediatr.pre2020.Nov.619
Tamayo F, Agaméz J, Aparicio D, Márquez J. Bisfenol a y efectos de disrupción endocrina en humanos y animales: Revisión sistemática: Rev Investig Agrar Ambient. 2022;13(2):175-200. https://doi.org/10.22490/21456453.4691
Stavridis K, Triantafyllidou O, Pisimisi M, Vlahos N. Bisphenol-A and Female Fertility: An Update of Existing Epidemiological Studies. J Clin Med. 2022;11(23):7227. https://doi.org/10.3390/jcm11237227
Gao Z, Liu S, Tan L, Gao X, Fan W, Ding C, et al. Testicular toxicity of bisphenol compounds: Homeostasis disruption of cholesterol/testosterone via PPAR? activation. Sci Total Environ. 2022; 836:155628. https://doi.org/10.1016/j.scitotenv.2022.155628
Li C, Zhang L, Ma T, Gao L, Yang L, Wu M, et al. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling. Chemosphere. 2021; 263:128020. https://doi.org/10.1016/j.chemosphere.2020.128020
Pathak R, Jung D, Shin S, Ryu B, Lee H, Kim J. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. J Hazard Mater. 2024; 469:133935. https://doi.org/10.1016/j.jhazmat.2024.133935
Zhang C, Luo Y, Qiu S, Huang X, Jin K, Li J, et al. Associations between urinary concentrations of bisphenols and serum concentrations of sex hormones among US. Males. Environ Health. 2022;21(1):135. https://doi.org/10.1186/s12940-022-00949-6
Li J, Zhang W, Zhao H, Zhou Y, Xu S, Li Y, et al. Trimester-specific, gender-specific, and low-dose effects associated with non-monotonic relationships of bisphenol A on estrone, 17?-estradiol and estriol. Environ Int. 2020; 134:105304. https://doi.org/10.1016/j.envint.2019.105304
Pollock T, Arbuckle T, Guth M, Bouchard M, St-Amand A. Associations among urinary triclosan and bisphenol A concentrations and serum sex steroid hormone measures in the Canadian and U.S. Populations. Environ Int. 2021; 146:106229. https://doi.org/10.1016/j.envint.2020.106229
Li Z, Chen C, Ying P, Ji-jun G, Lian-jie D, Dan H, et al. Bisphenol A and its analogue bisphenol S exposure reduce estradiol synthesis via the ROS-mediated PERK/ATF4 signaling pathway. Food Chem Toxicol. 2023; 182:114179. https://doi.org/10.1016/j.fct.2023.114179
Iwamoto M, Masuya T, Hosose M, Tagawa K, Ishibashi T, Suyama K, et al. Bisphenol A derivatives act as novel coactivator-binding inhibitors for estrogen receptor ?. J Biol Chem. 2021;297(5):101173. https://doi.org/10.1016/j.jbc.2021.101173
Pelch KE, Li Y, Perera L, Thayer KA, Korach KS. Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles. Toxicol Sci. 2019;172(1):23-37. https://doi.org/10.1093/toxsci/kfz173
Zheng J, Chen S, Lu H, Xia M, Wang S, Li X, et al. Enhanced inhibition of human and rat aromatase activity by benzene ring substitutions in bisphenol A: QSAR structure-activity relationship and in silico docking analysis. J Hazard Mater. 2024; 465:133252. https://doi.org/10.1016/j.jhazmat.2023.133252
Xu H, Zhang X, Ye Y, Li X. Bisphenol A affects estradiol metabolism by targeting CYP1A1 and CYP19A1 in human placental JEG-3 cells. Toxicol In Vitro. 2019; 61:104615. https://doi.org/10.1016/j.tiv.2019.104615
Hwang W, Lee T, Kim N, Kwon J. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int J Mol Sci. 2020; 22(1):373. https://doi.org/10.3390/ijms22010373
Mandalà M. Influence of Estrogens on Uterine Vascular Adaptation in Normal and Preeclamptic Pregnancies. Int J Mol Sci. 2020; 21(7):2592. https://doi.org/10.3390/ijms21072592
Shu C, Han S, Xu P, Wang Y, Cheng T, Hu C. Estrogen and Preeclampsia: Potential of Estrogens as Therapeutic Agents in Preeclampsia. Drug Des Devel Ther. 2021;15:2543-50. https://doi.org/10.2147/DDDT.S304316
Tang Z, Xu X, Deng S, Lian Z, Yu K. Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int J Mol Sci. 2020;21(4):1519. https://doi.org/10.3390/ijms21041519
Dusza H, Van Boxel J, Van Duursen M, Forsberg M, Legler J, Vähäkangas K. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. Sci Total Environ. 2023; 860:160403. https://doi.org/10.1016/j.scitotenv.2022.160403
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479-96. https://doi.org/10.1007/s00018-019-03104-6
Plitman R, Abbas Y, Charnock-Jones D, Burton G, Marom G. Three-dimensional morphological analysis of placental terminal villi. Interface Focus. 2019;9(5):20190037. https://doi.org/10.1098/rsfs.2019.0037
Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci Total Environ. 2023; 856:159060. https://doi.org/10.1016/j.scitotenv.2022.159060
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021; 146:106274. https://doi.org/10.1039/C8NR04916E
Fournier S, D’Errico J, Adler D, Kollontzi S, Goedken M, Fabris L, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol. 2020;17(1):55. https://doi.org/10.1186/s12989-020-00385-9
Bai C, Wang D, Luan Y, Huang S, Liu L, Guo Y. A review on micro- and nanoplastics in humans: Implication for their translocation of barriers and potential health effects. Chemosphere. 2024; 361:142424. https://doi.org/10.1016/j.chemosphere.2024.142424
Furukawa S, Tsuji N, Sugiyama A. Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol. 2019;32(1):1-17. https://doi.org/10.1293/tox.2018-0042
Cary C, DeLoid G, Yang Z, Bitounis D, Polunas M, Goedken M, et al. Ingested Polystyrene Nanospheres Translocate to Placenta and Fetal Tissues in Pregnant Rats: Potential Health Implications. Nanomaterials. 2023;13(4):720. https://doi.org/10.3390/nano13040720
Alva R, Wiebe J, Stuart J. Revisiting reactive oxygen species production in hypoxia. Pflüg Arch - Eur J Physiol. 2024;476(9):1423-44. https://doi.org/10.1007/s00424-024-02986-1
Hu J, Qin X, Zhang J, Zhu Y, Zeng W, Lin Y, et al. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod Toxicol. 2021; 106:42-50. https://doi.org/10.1016/j.reprotox.2021.10.002
Das A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci Total Environ. 2023; 895:165076. https://doi.org/10.1016/j.scitotenv.2023.165076
Ortiz J, Medina M. Estrés oxidativo ¿un asesino silencioso? Educ Quím. 2020; 31(1):2. https://doi.org/10.22201/fq.18708404e.2020.1.69709
Bai J, Wang Y, Deng S, Yang Y, Chen S, Wu Z. Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1?/JNK axis induced apoptosis and endoplasmic reticulum stress. Part Fibre Toxicol. 2024;21(1):36. https://doi.org/10.1186/s12989-024-00595-5
Dibbon K, Mercer G, Maekawa A, Hanrahan J, Steeves K, Ringer L, et al. Polystyrene micro- and nanoplastics cause placental dysfunction in mice. Biol Reprod. 2024;110(1):211-8. https://doi.org/10.1093/biolre/ioad126
Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta BBA - Mol Basis Dis. 2020;1866(2):165373. https://doi.org/10.1016/j.bbadis.2018.12.024
Zhang R, Feng Y, Nie P, Wang W, Wu H, Wan X, et al. Polystyrene microplastics disturb maternal glucose homeostasis and induce adverse pregnancy outcomes. Ecotoxicol Environ Saf. 2024; 279:116492. https://doi.org/10.1016/j.ecoenv.2024.116492
Bakrania B, Spradley F, Drummond H, LaMarca B, Ryan M, Granger J. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. En: Terjung R, editor. Comprehensive Physiology. 1.a ed. Wiley; 2020. 1315-49. https://doi.org/10.1002/cphy.c200008
Huynh K. Presence of microplastics in carotid plaques linked to cardiovascular events. Nat Rev Cardiol. 2024;21(5):279-279. https://doi.org/10.1038/s41569-024-01015-z
Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N Engl J Med. 2024;390(10):900-10. https://doi.org/10.1056/NEJMoa2309822
Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, et al. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol. 2020;92:14-56. https://doi.org/10.1016/j.reprotox.2019.04.004
Caballero-Flores G, Pickard J, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol. 2023;21(6):347-60. https://doi.org/10.1038/s41579-022-00833-7
Garza-Velasco R, Garza-Manero S, Perea-Mejía L. Microbiota intestinal: aliada fundamental del organismo humano. Gut microbiota: our fundamental allied. Educ Quím. de 2021;32(1):10. https://doi.org/10.22201/fq.18708404e.2021.1.75734
Wardman J, Bains R, Rahfeld P, Withers S. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 2022;20(9):542-56. https://doi.org/10.1038/s41579-022-00712-1
Álvarez J, Fernández J, Guarner F, Gueimonde M, Rodríguez J, Saenz M, et al. Microbiota intestinal y salud. Gastroenterol Hepatol. 2021;44(7):519-35. https://doi.org/10.1016/j.gastrohep.2021.01.009
Dahl W, Rivero D, Lambert J. Diet, nutrients and the microbiome. En: Progress in Molecular Biology and Translational Science. Elsevier; 2020. 237-63. https://doi.org/10.1016/bs.pmbts.2020.04.006
Laursen M, Bahl M, Licht T. Settlers of our inner surface – factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol Rev. 2021;45(4): https://doi.org/10.1093/femsre/fuab001
Fishbein S, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol. 2023;21(12):772-88. https://doi.org/10.1038/s41579-023-00933-y
Nissen L, Spisni E, Spigarelli R, Casciano F, Valerii M, Fabbri E, et al. Single exposure of food-derived polyethylene and polystyrene microplastics profoundly affects gut microbiome in an in vitro colon model. Environ Int. 2024; 190:108884. https://doi.org/10.1016/j.envint.2024.108884
Souza-Silva T, Oliveira I, Silva G, Giusti F, Novaes R, Paula H. Impact of microplastics on the intestinal microbiota: A systematic review of preclinical evidence. Life Sci. 2022; 294:120366. https://doi.org/10.1016/j.lfs.2022.120366
Tamargo A, Molinero N, Reinosa J, Alcolea-Rodriguez V, Portela R, Bañares M, et al. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep. 2022;12(1):528. https://doi.org/10.1038/s41598-021-04489-w
Lee S, Lin W, Cheng T. Microbiota-mediated metabolic perturbations in the gut and brain of mice after microplastic exposure. Chemosphere. 2024; 350:141026. https://n9.cl/sqek6a
Qiao J, Chen R, Wang M, Bai R, Cui X, Liu Y, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale. 2021;13(19):8806-16. https://doi.org/10.1039/D1NR00038A
Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y. Maternal Polystyrene Microplastic Exposure during Gestation and Lactation Altered Metabolic Homeostasis in the Dams and Their F1 and F2 Offspring. Environ Sci Technol. 2019;53(18):10978-92. https://doi.org/10.1021/acs.est.9b03191
Macià M, Del Pozo J, Díez-Aguilar M, Guinea J. Diagnóstico microbiológico de las infecciones relacionadas con la formación de biopelículas. Enfermedades Infecc Microbiol Clínica. 2018; 36(6):375-81. https://doi.org/10.1016/j.eimc.2017.04.006
Gorczyca K, Obuchowska A, Kimber-Trojnar ?, Wierzchowska-Opoka M, Leszczy?ska-Gorzelak B. Changes in the Gut Microbiome and Pathologies in Pregnancy. Int J Environ Res Public Health. 2022; 19(16):9961. https://doi.org/10.3390/ijerph19169961
Ali M, Ahmed M, Memon M, Chandio F, Shaikh Q, Parveen A, et al. Preeclampsia: A comprehensive review. Clin Chim Acta. 2024; 563:119922. https://doi.org/10.1016/j.cca.2024.119922
Torres-Torres J, Espino-y-Sosa S, Martinez-Portilla R, Borboa-Olivares H, Estrada-Gutierrez G, Acevedo-Gallegos S, et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int J Mol Sci. 2024; 25(14):7569. https://doi.org/10.3390/ijms25147569
Huang L, Thonusin C, Chattipakorn N, Chattipakorn S. Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review. Eur J Nutr. 2021; 60(5):2343-60. https://doi.org/10.1007/s00394-021-02483-6
Ionescu R, Enache R, Cretoiu S, Gaspar B. Gut Microbiome Changes in Gestational Diabetes. Int J Mol Sci. 2022; 23(21):12839. https://doi.org/10.3390/ijms232112839
Aghaei Z, Sled J, Kingdom J, Baschat A, Helm P, Jobst K, et al. Maternal Exposure to Polystyrene Micro- and Nanoplastics Causes Fetal Growth Restriction in Mice. Environ Sci Technol Lett. 2022; 9(5):426-30. https://doi.org/10.1021/acs.estlett.2c00186
Chen G, Xiong S, Jing Q, Van Gestel C, Van Straalen N, Roelofs D, et al. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci Total Environ. 2023; 854:158666. https://doi.org/10.1016/j.scitotenv.2022.158666
Jeong B, Baek JY, Koo J, Park S, Ryu Y, Kim K, et al. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. J Hazard Mater. 2022; 426:127815. https://doi.org/10.1016/j.jhazmat.2021.127815
Tian L, Zhang Y, Chen J, Liu X, Nie H, Li K, et al. Effects of nanoplastic exposure during pregnancy and lactation on neurodevelopment of rat offspring. J Hazard Mater. 2024; 474:134800. https://doi.org/10.1016/j.jhazmat.2024.134800
Dusza H, Katrukha E, Nijmeijer S, Akhmanova A, Vethaak A, Walker D, et al. Uptake, Transport, and Toxicity of Pristine and Weathered Micro- and Nanoplastics in Human Placenta Cells. Environ Health Perspect. 2022; 130(9):097006. https://doi.org/10.1289/EHP10873
Yong C, Valiyaveettil S, Tang B. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int J Environ Res Public Health. 2020; 17(5):1509. https://doi.org/10.3390/ijerph17051509
Moreno G, Brunson-Malone T, Adams S, Nguyen C, Seymore T, Cary C, et al. Identification of micro- and nanoplastic particles in postnatal sprague-dawley rat offspring after maternal inhalation exposure throughout gestation. Sci Total Environ. 2024; 951:175350. https://doi.org/10.1016/j.scitotenv.2024.175350
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. https://doi.org/10.1186/s40168-019-0704-8
Martínez R, Jiménez Ortega A, Peral Á, Bermejo L, Rodríguez-Rodríguez E. Importance of nutrition during pregnancy. Impact on the composition of breast milk. Nutr Hosp. 2020; https://doi.org/10.20960/nh.03355
Menjívar L, Herrera A, Tario C, Abrego K. Uso de mioinositol y otros suplementos nutricionales para prevención primaria de la diabetes mellitus gestacional. Alerta Rev Científica Inst Nac Salud. 2024;7(2):169-76. https://doi.org/10.5377/alerta.v7i2.16527
Zhang Y, Tian L, Chen J, Liu X, Li K, Liu H, et al. Selective bioaccumulation of polystyrene nanoplastics in fetal rat brain and damage to myelin development. Ecotoxicol Environ Saf. 2024; 278:116393. https://doi.org/10.1016/j.ecoenv.2024.116393
Duncan I, Marik R, Broman A, Heidari M. Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proc Natl Acad Sci. 2017;114(45). https://doi.org/10.1073/pnas.1714183114
Gerevich Z, Kovács R, Liotta A, Hasam-Henderson L, Weh L, Wallach I, et al. Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study. J Cereb Blood Flow Metab. 2023;43(9):1571-87. https://doi.org/10.1177/0271678X231170746
Gong Z, Bilgel M, Kiely M, Triebswetter C, Ferrucci L, Resnick S, et al. Lower myelin content is associated with more rapid cognitive decline among cognitively unimpaired individuals. Alzheimers Dement. 2023;19(7):3098-107. https://doi.org/10.1002/alz.12968
Kato D, Wake H, Lee P, Tachibana Y, Ono R, Sugio S, et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia. 2020;68(1):193-210. https://doi.org/10.1002/glia.23713