Contenido principal del artículo

Mariana Alexandra Martínez Ortiz
Marco Antonio Sigüenza Pacheco
Janeth Esperanza Toalongo Salto

Estudios de la región muestran que, en hospitales y clínicas de América Latina, el perfil de resistencia de Pseudomonas aeruginosa ha evolucionado notablemente. El objetivo: analizar la evolución de la resistencia antibiótica de Pseudomonas aeruginosa en Latinoamérica. Metodología: Enfoque cualitativo, bajo una revisión de la literatura, siguiendo la metodología PRISMA 2020. Se utilizaron las bases de datos PubMed y LILACS. La búsqueda se llevó a cabo en marzo 2025, priorizando publicaciones de los últimos cinco años, se consideraron estudios anteriores de los años 2007, 2008, 2013, 2014, 2016, 2017 y 2018. Los resultados muestran que, desde 2015 se registraron cambios importantes en la epidemiología: varios centros reportaron un aumento en la prevalencia de carbapenemasas de tipo bla KPC (con cifras de hasta 75% en algunos estudios), la emergencia de bla NDM y la aparición de variantes OXA, así como la detección de otros genes (bla IMP, bla SPM, bla PER) mediante métodos moleculares (PCR, WGS, RT-PCR). También, se confirman la variabilidad en la coproducción de mecanismos de resistencia y la presencia continua de sistemas de eflujo y alteraciones en la permeabilidad de la membrana, lo que refleja la diversidad microbiológica y molecular que caracteriza la evolución de la resistencia en P. aeruginosa a lo largo del tiempo en la región. En conclusión, resulta fundamental priorizar la estandarización de los protocolos de vigilancia y la integración de herramientas moleculares en la rutina diagnóstica y, promover la colaboración regional para el monitoreo de clones y mecanismos emergentes.

Studies from the region show that the resistance profile of Pseudomonas aeruginosa has evolved significantly in hospitals and clinics in Latin America. The objective: to analyze the evolution of antibiotic resistance against Pseudomonas aeruginosa in Latin America. Methodology: A qualitative approach, based on a literature review, followed the PRISMA 2020 methodology. The PubMed and LILACS databases were used. The search was carried out in March 2025, prioritizing publications from the last five years, previous studies from the years 2007, 2008, 2013, 2014, 2016, 2017 and 2018 were considered. The results show that, since 2015, important changes in epidemiology have been recorded: several centers reported an increase in the prevalence of bla KPC-type carbapenemases (with figures of up to 75% in some studies), the emergence of bla NDM and the appearance of OXA variants, as well as the detection of other genes (bla IMP, bla SPM, bla PER) by molecular methods (PCR, WGS, RT-PCR). Furthermore, variability in the co-production of resistance mechanisms and the continued presence of efflux systems and alterations in membrane permeability are confirmed, reflecting the microbiological and molecular diversity that characterizes the evolution of resistance in P. aeruginosa over time in the region. In conclusion, it is essential to prioritize the standardization of surveillance protocols and the integration of molecular tools into diagnostic routines, and to promote regional collaboration for the monitoring of emerging clones and mechanisms.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Martínez Ortiz, M. A., Sigüenza Pacheco, M. A., & Toalongo Salto, J. E. (2025). Evolución de la resistencia antibiótica de Pseudomonas aeruginosa en Latinoamérica. Una revisión de alcance. Revista Vive, 8(23), 608–632. https://doi.org/10.33996/revistavive.v8i23.401
Sección
INVESTIGACIONES
Referencias

World Health Organization. Antimicrobial resistance: global report on surveillance [Internet]. Geneva: World Health Organization; 2014. https://iris.who.int/handle/10665/112642

Giono S, Santos I, Morfín M, Torres F, Alcántar-Curiel M. Resistencia antimicrobiana. Importancia y esfuerzos por contenerla. GMM [Internet]. el 19 de febrero de 2020; 156(2):3610. https://gacetamedicademexico.com/frame_esp.php?id=405

Carvalho H, Gontijo P. Epidemiologically relevant antimicrobial resistance phenotypes in pathogens isolated from critically ill patients in a Brazilian Universitary Hospital. Braz J Microbiol. 2008; 39(4):623–30. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822008000400005&lng=en&nrm=iso&tlng=en

Roldán L. Resistencia a antimicrobianos y virulencia en cepas no- clínicas de Pseudomonas aeruginosa. Tesis Dr Area Microbiol Mol del Cent Investig Biomédica la Rioja, Univ la Rioja, Logroño, España, 2018. 2018; 427. https://dialnet.unirioja.es/servlet/tesis?codigo=18476

Silby W, Winstanley C, Godfrey A, Levy S, Jackson W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 2011; 35(4):652–80. https://academic.oup.com/femsre/article-lookup/doi/10.1111/j.1574-6976.2011.00269.x

Karlowsky A, Hoban J, Hackel A, Lob H, Sahm D. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013–2015. The Brazilian Journal of Infectious Diseases. 2017; 21(3):343–8. https://linkinghub.elsevier.com/retrieve/pii/S141386701630263X

Wise G, Karlowsky A, Mohamed N, Hermsen D, Kamat S, Townsend A, et al. Global trends in carbapenem- and difficult-to-treat-resistance among World Health Organization priority bacterial pathogens: ATLAS surveillance program 2018–2022. Journal of Global Antimicrobial Resistance. 2024; 37:168–75. https://linkinghub.elsevier.com/retrieve/pii/S2213716524000729

Martins F, Zavascki P, Gaspareto B, Barth AL. Dissemination of Pseudomonas aeruginosa Producing SPM-1-like and IMP-1-like Metallo-?-lactamases in Hospitals from Southern Brazil. Infection. 2007; 35(6):457–60. http://link.springer.com/10.1007/s15010-007-6289-3

Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals. 2013; 6(11):1335–46. https://www.mdpi.com/1424-8247/6/11/1335

Elena A, Quinteros M, Di Conza J, Gutkind G, Cejas D, Radice A. Full characterization of an IncR plasmid harboring qnrS1 recovered from a VIM-11-producing Pseudomonas aeruginosa. Revista Argentina de Microbiología. 2020; 52(4):298–304. https://linkinghub.elsevier.com/retrieve/pii/S0325754119301269

Labarca A, Salles J, Seas C, Guzmán M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Critical Reviews in Microbiology. 2014; 1–17. http://www.tandfonline.com/doi/full/10.3109/1040841X.2014.940494

Shortridge D, Gales C, Streit M, Huband D, Tsakris A, JonesRN. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infectious Diseases. 2019; 6(Supplement_1):S63–8. https://academic.oup.com/ofid/article/6/Supplement_1/S63/5381622

Beirão M, Rodrigues D, Andrade K, Serra B, Paula D, Polis J. Activity of ceftolozane-tazobactam and comparators against gram-negative bacilli: Results from the study for monitoring antimicrobial resistance trends (SMART – Brazil; 2016–2017). The Brazilian Journal of Infectious Diseases. 2020; 24(4):310–21. https://linkinghub.elsevier.com/retrieve/pii/S1413867020300891

Escandón K, Reyes S, Gutiérrez S, Villegas V. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-infective Therapy. 2017; 15(3):277–97. https://www.tandfonline.com/doi/full/10.1080/14787210.2017.1268918

Mojica M, De La Cadena E, García J, Porras J, Novoa I, Páez L. Molecular Mechanisms of Resistance to Ceftazidime/Avibactam in Clinical Isolates of Enterobacterales and Pseudomonas aeruginosa in Latin American Hospitals. Bradford PA, editor. mSphere. 2023; 8(2):e00651-22. https://journals.asm.org/doi/10.1128/msphere.00651-22

Sambrano H, Castillo J, Ramos C, De Mayorga B, Chen O, Durán O. Prevalence of antibiotic resistance and virulent factors in nosocomial clinical isolates of Pseudomonas aeruginosa from Panamá. The Brazilian Journal of Infectious Diseases. 2021;25(1):101038. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1413867020301653

Remolina A, Conde C, Escobar J, Leal A, Bravo J, Saavedra S. Tipos de carbapenemasas expresadas en Klebsiella spp., y Pseudomonas aeruginosa resistente a carbapenémicos en seis hospitales de alta complejidad de la Ciudad de Bogotá - Colombia. Rev chil infectol. 2021; 38(5):720–3. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182021000500720&lng=en&nrm=iso&tlng=en

Garza E, Morfín R, Mendoza S, Bocanegra P, Flores S, Rodríguez E. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. Shafer WM, editor. PLoS ONE. 2019;14(3):e0209865. https://dx.plos.org/10.1371/journal.pone.0209865

Almeida F, Dantas C, Ferreira L, Urzedo E, Almeida E, Royer S. Relationship between antimicrobial use and the highest number of multidrug-resistant-Pseudomonas aeruginosa: a 10-year study. J Infect Dev Ctries. 2024; 18(08):1227–32. https://www.jidc.org/index.php/journal/article/view/18400

Krapp F, García C, Hinostroza N, Astocondor L, Rondon CR, Ingelbeen B. Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Bloodstream Infections in Peru and Associated Outcomes: VIRAPERU Study. The American Journal of Tropical Medicine and Hygiene [Internet]. el 1 de noviembre de 2023 [citado el 8 de marzo de 2025];109(5):1095–106. Disponible en: https://www.ajtmh.org/view/journals/tpmd/109/5/article-p1095.xml

Ponce A, Merchant S, Raman G, Avendano E, Chan J, Tepichin G. Pseudomonas infections among hospitalized adults in Latin America: a systematic review and meta-analysis. BMC Infect Dis. 2020; 20(1):250. https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-04973-0

García J, Appel T, Esparza G, Gales A, Levy G, Cornistein W. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-infective Therapy. 2021; 19(2):197–213. https://www.tandfonline.com/doi/full/10.1080/14787210.2020.1813023

Lima L, Ximenes M, Maciel A. Occurrence of blaKPC gene in clinical isolates of Pseudomonas aeruginosa from Brazil. ABCS Health Sci. 2022;47:e022306. https://www.portalnepas.org.br/abcshs/article/view/1646

Karlowsky J, Lob S, Estabrook M, Siddiqui F, DeRyke C, Young K. Susceptibility profile and ?-lactamase content of global Pseudomonas aeruginosa isolates resistant to ceftolozane/tazobactam and/or imipenem/relebactam—SMART 2016–21. JAC-Antimicrobial Resistance. 2023; 5(3):dlad080. https://academic.oup.com/jacamr/article/doi/10.1093/jacamr/dlad080/7209483

Ibáñez E, Bustos I, Gamboa E, Josa D, Méndez L, Fuentes Y. Molecular characterization and descriptive analysis of carbapenemase-producing Gram-negative rod infections in Bogota, Colombia. Sekyere JO, editor. Microbiol Spectr. 2024; 12(6):e01714-23. https://journals.asm.org/doi/10.1128/spectrum.01714-23

Bittencourt A, Faustino L, Batista D, Leonel P, De Paula D, Polis T. Activity of ceftolozane/tazobactam and comparators against gram-negative bacilli: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART – Brazil), 2018?2021. The Brazilian Journal of Infectious Diseases. 2025; 29(1):104497. https://linkinghub.elsevier.com/retrieve/pii/S1413867024007797

Dos Santos A, Cayô R, Valiatti B, Gales C, De Araújo F, Rodrigues M. Biodiversity of carbapenem-resistant bacteria in clinical samples from the Southwest Amazon region (Rondônia/Brazil). Sci Rep. 2024; 14(1):9383. https://www.nature.com/articles/s41598-024-59733-w

Mesquita P, Costa C, Silva A, Araújo G, Vila G, Castro J. Antimicrobial resistance of Pseudomonas aeruginosa isolated from patients with pneumonia during the COVID-19 pandemic and pre-pandemic periods in Northeast Brazil. Braz J Med Biol Res. 2023;56:e12726. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2023000100651&tlng=en

Lemos E, Rentería S, Muñoz M, González K Guerrón G, Ramos J. In vitro activity of ceftazidime-avibactam against gram-negative bacteria in patients with bacteremia and skin and soft-tissue infections in Colombia 2019–2021. Diagnostic Microbiology and Infectious Disease. 2024; 109(2):116235. https://linkinghub.elsevier.com/retrieve/pii/S0732889324000646

Soto K, Alcalde M, Ugalde J, Olivares J, Quiroz V, Brito B. Ceftazidime/avibactam resistance is associated with PER-3-producing ST309 lineage in Chilean clinical isolates of non-carbapenemase producing Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2024; 14:1410834. https://www.frontiersin.org/articles/10.3389/fcimb.2024.1410834/full

Rodrigues C, Silva A, Dos Reis H, Dos Santos A, Sardinha M, Gouveia I. Molecular Epidemiology of Pseudomonas aeruginosa in Brazil: A Systematic Review and Meta-Analysis. Antibiotics. 2024; 13(10):983. https://www.mdpi.com/2079-6382/13/10/983

Tapia A, Ramírez F, Guerrero A, Guillen D, Arreola J, González M. Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico. Pathogens. 2024; 13(11):992. https://www.mdpi.com/2076-0817/13/11/992

Espinoza D, Esparza G. Resistencia enzimática en Pseudomonas aeruginosa, aspectos clínicos y de laboratorio. Rev chil infectol. 2021; 38(1):69–80. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182021000100069&lng=en&nrm=iso&tlng=en

Wang L, Jia H, Sun Y, Zhang Y, Liu S, Lin Y. Evaluation of NitroSpeed-Carba NP test for rapid identification among different classes of carbapenemases in Enterobacterales and Pseudomonas aeruginosa. International Journal of Infectious Diseases. 2021; 106:415–20. https://linkinghub.elsevier.com/retrieve/pii/S1201971221003465

Viñes J, Lopera C, Vergara A, Roca I, Vila J, Casals-Pascual C, et al. Emergence of carbapenem-resistant Pseudomonas aeruginosa ST179 producing both IMP-16 and KPC-2: a case study of introduction from Peru to Spain. Papp-Wallace KM, editor. Microbiol Spectr. 2024; 12(6):e00614-24. https://journals.asm.org/doi/10.1128/spectrum.00614-24

Zurita J, Sevillano G, Solís M, Paz Y, Miño A, Alves R, Changuan J. Pseudomonas aeruginosa epidemic high-risk clones and their association with multidrug-resistant. Journal of Global Antimicrobial Resistance. 2024; 38:332–8. https://linkinghub.elsevier.com/retrieve/pii/S2213716524001309