Técnicas e instrumentos para evaluar el Trastorno del Espectro Autista (TEA): una revisión sistemática
Techniques and instruments to evaluate the Autism Spectrum Disorder (ASD): a systematic reviewContenido principal del artículo
El Trastorno del Espectro Autista (TEA) es un trastorno del desarrollo neurológico que afecta la comunicación, la interacción social y se caracteriza por comportamientos repetitivos y patrones de interés restringidos. Objetivo. Identificar artículos que analicen el desarrollo o la adaptación de técnicas e instrumentos de evaluación y diagnóstico del TEA en niños y/o adolescentes. Metodología. Se consultaron cuatro bases de datos (Scopus, PubMed, Web of Science y ProQuest). En total, se registraron 30 artículos provenientes de diferentes regiones. Resultados. El instrumento más mencionado se denomina refuerzos positivos, utilizado en 10 investigaciones. Le siguen el ABII/ABII-PQ con 11 investigaciones y el Autism Diagnostic Observation Schedule (ADOS-2), que aparece en 6 estudios. Otros instrumentos reconocidos incluyen la Autism Diagnostic Interview-Revised (ADI-R), utilizada en 1 investigación, y la Chandigarh Autism Screening Instrument (CASI), también en 1 estudio. Además, se destacan herramientas como el Social Responsibility Scale (SRS) y el Child Behaviour Checklist (CBCL), entre otros. Conclusión. Los instrumentos convencionales tienden a refinarse y adaptarse mejor a los contextos locales, mientras que los tecnológicos podrían permitir un diagnóstico más preciso y temprano del TEA en niños
The Autism Spectrum Disorder (ASD) is a neurological developmental disorder that affects communication, social interaction, and is characterized by repetitive behaviors and restricted patterns of interest. Objective. To identify articles that analyze the development or adaptation of assessment and diagnostic techniques and instruments for ASD in children and/or adolescents. Methodology. To achieve this, four databases were consulted (Scopus, PubMed, Web of Science, and ProQuest). A total of 30 articles from different regions were recorded. Results. The most mentioned instrument is called positive reinforcements, used in 10 studies. Following this, the ABII/ABII-PQ appears in 11 studies, and the Autism Diagnostic Observation Schedule (ADOS-2) is found in 6 studies. Other recognized instruments include the Autism Diagnostic Interview-Revised (ADI-R), used in 1 study, and the Chandigarh Autism Screening Instrument (CASI), also in 1 study. Additionally, tools such as the Social Responsibility Scale (SRS) and the Child Behavior Checklist (CBCL) are highlighted among others. Conclusion. The conventional instruments tend to be refined and better adapted to local contexts, while technological ones could allow for a more accurate and early diagnosis of ASD in children
Descargas
Detalles del artículo
OMS. Organización Mundial de la Salud. 2023. Autismo.: https://www.who.int/es/news-room/fact-sheets/detail/autism-spectrum-disorders
Alcalá G, Ochoa Madrigal M. Trastorno del espectro autista (TEA). Rev Fac Med México. febrero de 2022;65(1):7-20. https://doi.org.10.22201/fm.24484865e.2022.65.1.02
Montagut M, Mas R, Fernández M, Pastor G. Influencia del sesgo de género en el diagnóstico de trastorno de espectro autista: una revisión. Escr Psicol. 2018;11(1):42-54. https://doi.org.10.5231/psy.writ.2018.2804
Coelho-Medeiros M, Bronstein J, Aedo K, Pereira J, Arraño V, Pérez C, et al. Validación del M-CHAT-R/F como instrumento de tamizaje para detección precoz en niños con trastorno del espectro autista. Rev Chil Pediatría. 2019;90(5):492-9. https://doi.org.10.32641/rchped.v90i5.703
Sanromà-Giménez M, Lázaro-Cantabrana J, Gisbert-Cervera M. El papel de las tecnologías digitales en la intervención educativa de niños con trastorno del espectro autista. RiiTE Rev Interuniv Investig En Tecnol Educ. 2018;(4). https://revistas.um.es/riite/article/view/327991
Ahmed N, Raheem E, Rahman N, Khan Z, Mosabbir A, Hossain M. Managing autism spectrum disorder in developing countries by utilizing existing resources: A perspective from Bangladesh. Autism Int J Res Pract. 2019;23(3):801-3. https://doi.org.10.1177/1362361318773981
Aliaga C, López-Fernández T, Torres-Chamorro A, Vásquez-Florentino B. Teleasistencia psicológica para niños con Trastorno del Espectro Autista: definiciones, directrices y tendencias tecnológicas para el trabajo basado en evidencia. 2020. https://api.semanticscholar.org/CorpusID:242779313
Demelenne D, Bobadilla S. Factores culturales del «Autismo». Rev Bol Redipe. 2023;12(4):86-98. https://doi.org.10.36260/rbr.v12i4.1955
ISocial. iCalidad, herramienta tecnológica para la calidad de vida de las personas con TEA - Fundació iSocial. Innovació en l’acció social. 2023. https://isocial.cat/es/icalidad-eina-tecnologica-per-la-qualitat-de-vida-de-les-persones-amb-tea/
Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349: g7647. https://doi.org.10.1136/bmj.g7647
Abidin W, Jusoff K, Zaki N, Ahmad S. Developing and Assessing Positive Reinforcers to Understand Learning Behavior of Children with Autism Spectrum Disorder in Malaysia. J Behav Sci. 2024;19(3):75-89. https://so06.tci-thaijo.org/index.php/IJBS/article/view/271083
Ward S, Sullivan K, Gilmore L. Adapting the Autistic Behavioural Indicators Instrument (ABII) as a parent questionnaire (ABII-PQ). J Intellect Dev Disabil. 2017;42(4):385-90. https://doi.org.10.3109/13668250.2016.1252037
Jonsdottir S, Saemundsen E, Thorarinsdottir E, Rafnsson V. Evaluating screening for autism spectrum disorder using cluster randomization. Sci Rep. 2024; 14:6855. https://doi.org.10.1038/s41598-024-57656-0
Deng L, Wz H, Zhang Q, Wei L, Dai D, Liu Y, et al. Caregiver-child interaction as an effective tool for identifying autism spectrum disorder: evidence from EEG analysis. Child Adolesc Psychiatry Ment Health. 2023;17(1). https://pubmed.ncbi.nlm.nih.gov/38098032/
Carrozza C, Rosa A. Dysfunctional perceptual antecedent can justify the social orient-ing deficit in autism spectrum disorder: an eye-tracking study. 2020;289-302. https://doi.org.10.1108/AIA-03-2020-0015
Natraj S, Kojovic N, Maillart T, Schaer M. Video-audio neural network ensemble for comprehensive screening of autism spectrum disorder in young children. PLOS ONE. October 3, 2024;19(10): e0308388. https://doi.org.10.1371/journal.pone.0308388
Jones W, Klaiman C, Richardson S, Aoki C, Smith C, Minjarez M, et al. Eye-Tracking–Based Measurement of Social Visual Engagement Compared with Expert Clinical Diagnosis of Autism. JAMA. 2023;330(9):854-65. https://doi.org.10.1001/jama.2023.13295
Havdahl K, Bishop S, Surén P, Øyen A, Lord C, Pickles A, et al. The influence of pa-rental concern on the utility of autism diagnostic instruments. Autism Res Off J Int Soc Autism Res. 2017;10(10):1672-86.
Arun P, Chavan B. Development of a screening instrument for autism spectrum disor-der: Chandigarh Autism Screening Instrument. Indian J Med Res. 2018;147(4):369-75. https://doi.org.10.4103/ijmr.IJMR_1968_16
Betz E, Hackman N, Mayes S, Chin E, Ivy J, Tierney C. Validity of the Autism Mental Status Exam in Developmental Pediatrics and Primary Care Settings. Glob Pediatr Health. 2019; 6:359-76. https://doi.org.10.1177/2333794X19847905
Özdemir O, Diken IH. Reliability and Validity Studies of the Adapted Autism Behaviour Checklist in Turkey. J Dev Phys Disabil. 2018; 31:359-76. https://api.semanticscholar.org/CorpusID:150007181
Lan K, Wang X, Lu Y, Zhang A, Jia M, Lu L, et al. Comparison of the Clancy Autism Behavior Scale and Autism Behavior Checklist for Screening Autism Spectrum Disorder. J Autism Dev Disord. 2023. https://doi.org.10.1007/s10803-023-06180-7
Sallum M, Pellissari M, Carreiro L, de Vasconcellos F. Screening for Autism Spectrum Disorder in Children and Adolescents with Leber’s Congenital Amaurosis. Am J Ophthal-mol. 2024; 265:257-74. https://doi.org.10.1016/j.ajo.2024.05.020
Chun J, Bong G, Han J, Oh M, Yoo H. Validation of Social Responsiveness Scale for Korean Preschool Children with Autism. Psychiatry Investig. 2021;18(9):831-40. https://doi.org.10.30773/pi.2021.0182
Havdahl K, von Tetzchner S, Huerta M, Lord C, Bishop S. Utility of the Child Behavior Checklist as a Screener for Autism Spectrum Disorder. Autism Res Off J Int Soc Autism Res. 2016;9(1):33-42. https://doi.org.10.1002/aur.1515
Christopher K, Bishop S, Carpenter L, Warren Z, Kanne S. The Implications of Parent-Reported Emotional and Behavioral Problems on the Modified Checklist for Autism in Toddlers. J Autism Dev Disord. 2021;51(3):884-91. https://doi.org.10.1007/s10803-020-04469-5
Altiti R, Alodat A. The psychometric properties of the Jordanian version of the Modified Checklist for Autism in Toddlers-Revised (M-Chat-R/F). Discov Soc Sci Health. 2024;4(1):61. https://doi.org.10.1007/s44155-024-00112-1
Alkherainej K, Squires J. Accuracy of Three Screening Instruments in Identifying Pre-school Children at Risk for Autism Spectrum Disorder. J Intellect Disabil - Diagn Treat. 2015;3(4):156-63. https://journals.indexcopernicus.com/api/file/viewByFileId/1409335
Pilunthanakul T, Goh T, Fung S, Sultana R, Allen J, Sung M. Validity of the patient health questionnaire 9-item in autistic youths: a pilot study. BMC Psychiatry. 2021;21(1):564. https://doi.org.10.1186/s12888-021-03556-w
Forcelini C, Ampese R, Melo H, Pasin P, Pádua R, Spanholo C, et al. Proposal of a screening instrument for autism spectrum disorder in children (Mini-TEA Scale). Arq Neu-ropsiquiatr. 2024;82(3):1-8. https://doi.org.10.1055/s-0044-1780517
Nayak A, Khuntia R. Development and preliminary validation of Nayak Autism Screening Instrument (NASI). Asian J Psychiatry. 2023; 89:103777. https://doi.org.10.1016/j.ajp.2023.103777
Hashmi S, Ah Gang G, Sombuling A, MD Nawi NH, Megat P. Psychometric Properties and Factor Structure of the Malay Autism Spectrum Quotient: Children’s Version. Malays J Med Sci MJMS. 2021;28(6):108-20. https://doi.org.10.21315/mjms2021.28.6.11
Anglim M, Conway E, Barry M, Kashif M, Ackermann P, Moran A, et al. An initial examination of the psychometric properties of the Diagnostic Instrument for Social and Communication Disorders (DISCO-11) in a clinical sample of children with a diagnosis of Autism spectrum disorder. Ir J Psychol Med. 2022;39(3):251-60. https://doi.org.10.1017/ipm.2020.100
Harrison A, Zimak E, Sheinkopf S, Manji K, Morrow E. Observation-centered approach to ASD assessment in Tanzania. Intellect Dev Disabil. 2014;52(5):330-47. https://doi.org.10.1352/1934-9556-52.5.330
Schwenck C, Freitag C. Differentiation between attention-deficit/hyperactivity disorder and autism spectrum disorder by the social communication questionnaire. Atten Deficit Hyperact Disord. September 2014;6(3):221-9. https://doi.org.10.1007/s12402-014-0147-9
Chistol M, Danubianu M. Automated Detection of Autism Spectrum Disorder Symp-toms using Text Mining and Machine Learning for Early Diagnosis. Int J Adv Comput Sci Appl IJACSA. 2024;15(2). https://thesai.org/Publications/ViewPaper?Volume=15&Issue=2&Code=IJACSA&SerialNo=64
Vargas-Cuentas N, Roman-Gonzalez A, Gilman R, Barrientos F, Ting J, Hidalgo D, et al. Developing an eye-tracking algorithm as a potential tool for early diagnosis of autism spectrum disorder in children. PLOS ONE. 2017;12(11): e0188826. https://doi.org.10.1371/journal.pone.0188826
Ke SY Wu H, Sun H, Zhou A, Liu J, Zheng X, et al. Classification of autism spectrum disorder using electroencephalography in Chinese children: a cross-sectional retrospective study. Front Neurosci. 2024; 18:1330556. https://doi.org.10.3389/fnins.2024.1330556
Perochon S, Di Martino J, Carpenter L, Compton S, Davis N, Eichner B, et al. Early detection of autism using digital behavioral phenotyping. Nat Med. 2023;29(10):2489-97. https://doi.org.10.1038/s41591-023-02574-3
Themistocleous C, Andreou M, Peristeri E. Autism Detection in Children: Integrating Machine Learning and Natural Language Processing in Narrative Analysis. Behav Sci. 2024;14(6):459. https://doi.org.10.3390/bs14060459
Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series [Internet]. John Wiley&Sons, Ltd., Publication. 674 p. (Cochrane Book Series). https://www.radioterapiaitalia.it/wp-content/uploads/2017/01/cochrane-handbook-for-systematic-reviews-of-interventions.pdf
Lai M, Kassee C, Besney R, Bonato S, Hull L, Mandy W, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6(10):819-29. https://doi.org.10.1016/S2215-0366(19)30289-5
Newschaffer C, Croen L, Daniels J, Giarelli E, Grether J, Levy S, et al. The epidemiol-ogy of autism spectrum disorders. Annu Rev Public Health. 2007; 28:235-58. https://doi.org.10.1146/annurev.publhealth.28.021406.144007
Chiarotti F, Venerosi A. Epidemiology of Autism Spectrum Disorders: A Review of Worldwide Prevalence Estimates Since 2014. Brain Sci. May 1, 2020;10(5):274.
Zwaigenbaum L. Advances in the early detection of autism. Curr Opin Neurol. 2010;23(2):97. https://doi.org.10.3390/brainsci10050274
Lord C, Luyster R, Gotham K, Guthrie W. Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-2) [Internet]. Torrance, CA; 2012. (Western Psychological Services.; vol. Manual (Part II): Toddler Module). Available at: https://www.research.chop.edu/car-autism-roadmap/autism-diagnostic-observation-schedule-2nd-edition-ados-2