Contenido principal del artículo

Luis Fuenmayor-González
Thalía Fajardo-Loaiza
Josué Rivadeneira-Dueñas
Juan Arévalo-Mancheno

En la actualidad, ha cobrado una gran importancia la relación que la microbiota intestinal mantiene con varios órganos y sistemas del cuerpo humano. Particularmente importante, son las relaciones de la microbiota con el Sistema Nervioso Central, el comportamiento y  el  desarrollo  y  tratamiento  de  varias  enfermedades.  La  relación  existente  entre  la  microbiota  intestinal  y  el  cerebro  se  produce gracias a la actividad de estímulos neuroendocrinos y neuroinmunes que pueden actuar de forma bilateral, llegando incluso a generar modificaciones en el comportamiento del ser humano. Del mismo modo, a través de la realización de estudios clínicos y paraclínicos, se ha conseguido demostrar la asociación entre el eje microbiota-intestino-cerebro y trastornos neurológicos como la enfermedad de Parkinson o el trastorno depresivo. El objetivo del presente artículo es realizar un análisis de los principales estudios identificados en relación a la función del eje microbiota-intestino-cerebro (MIC) así como identificar la nueva evidencia acerca del uso de probióticos en el tratamiento coadyuvante de varios trastornos neuro-psiquiátricos. Se realizó una búsqueda sistemática de la bibliografía utilizando palabras claves y términos MeSH y se presentó en formato de discusión de acuerdo a los subtemas: eje microbiota-intestino-cerebro, mecanismos de acción, microbiota y su relación con el comportamiento y regulación sobre probióticos. Se concluyó que existe evidencia que demuestra la relación entre el eje microbiota-intestino-cerebro y varios trastornos neuropsiquiátricos en el ser humano. Además, que la administración de probióticos puede modificar el eje MIC y pueden constituir una alternativa de terapia coadyuvante en estos trastornos del comportamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Fuenmayor-González, L., Fajardo-Loaiza, T. ., Rivadeneira-Dueñas, J. ., & Arévalo-Mancheno, J. . (2022). Microbiota, probióticos y el comportamiento humano. Revista Vive, 5(13), 75–86. https://doi.org/10.33996/revistavive.v5i13.1132
Sección
INVESTIGACIONES
Biografía del autor/a

Luis Fuenmayor-González, Universidad Central del Ecuador, Quito-Ecuador; Sociedad Ecuatoriana de Farmacología, Quito-Ecuador

Médico general, Universidad Central del Ecuador Quito-Ecuador. Máster en Dirección y Gestión Sanitaria por la Universidad Internacional de la Rioja Madrid-España.

Thalía Fajardo-Loaiza, Universidad Central del Ecuador, Quito-Ecuador

Médico general graduada en la Universidad Central del Ecuador Quito-Ecuador.

Josué Rivadeneira-Dueñas, QSC Integral Health, Quito-Ecuador

Médico cirujano, Universidad UTE Quito-Ecuador. Cursando maestría en Nutrición y Dietética Universidad Iberoamerica (UNINI) Ciudad de México.

Juan Arévalo-Mancheno, Sociedad Ecuatoriana de Farmacología, Quito-Ecuador

Médico cirujano graduado en la Universidad Central del Ecuador diplomado en Investigación Clínica por la Universidad De Las Américas con experiencia en dirección, conducción y monitoreo de ensayos clínicos.     

Referencias

Icaza-Chávez M. Microbiota intestinal en la salud y la enfermedad. Rev Gastroenterol México. 2013;78(4):240–8.

Brett B, Weerth C. The microbiota–gut–brain axis: A promising avenue to foster healthy developmental outcomes. Dev Psychobiol. 2019;61:772–82.

World Gastroenterology Organisation. Probióticos y prebióticos. Guías Mundiales la WGO. 2017;

Pinto-Sanchez M, Hall G, Ghajar K, Nardelli A, Bolino C, Lau J, et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: a Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology. 2017;2:448–59.

Collins S, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol. 2013;16:240–5.

Browne, Pamela; Classen, Eric; Cabana M. Microbiota in health and disease: from pregnancy to childhood. 1st ed. Wageningen Academic Publishers; 2017. 152–162 p.

Erny, D., Hrab? de Angelis, AL., Jaitin, D., Wieghofer, P., Staszewsk,i O., David, E., Keren- Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V. Utermöhlen O5, Chun E8, Garrett WS8, McCoy KD9, Diefenbach A7, Staeheli P4, Stecher B10, Amit PM. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

Bravo J, Forsythe P, Chew M, Escaravage E, Savignac H, Dinan T, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.

Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays. 2011;33(8):574–81.

Schroeder, FA., Lin, CL., Crusio, WE., Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry. 2007;62(1):55–64.

Clair RM, Vadim O, Amir K, Emeran AM. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–48.

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology. 2011;141:599–609.

Sudo, N., Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–75.

Papalini S., Michels F., Kohn N., Wegman J., van Hemert S., Roelofs K., Arias-Vasquez

A. VOPE. Stress matters: a double-blind, randomized controlled trial on the effects of a multispecies probiotic on neurocognition. bioRxiv. 2018;

Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of Fermented Milk Product With Probiotic Modulates Brain Activity. Gastroenterology. 2013;144(7).

Tolhurst G, Heffron H, Shan Lam Y, Parker H, Habib A, Diakogiannaki E, et al. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2. Diabetes. 2012;61:364–71.

Unger M, Spiegel J, Klaus-Ulrich Dillmann A, Grundmann D, Hannah Philippeit A, BÜRMANN J, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Park Relat Disord. 2016;32:66–72.

Yano J, Yu K, Donaldson G, Shastri G., Ma P, Nagler C, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):261–76.

Goehlera L, Gaykemaa R, Opitzb N, Reddawaya R, Badra N, Lyteb M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19:334–44.

Barrett, E., Ross R, O’Toole P, Fitzgerald G, Stanton C. c-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113:411–7.

Barrett E, Paul Ross R, O’Toole P, Fitzgerald G, Stanton C. CORRIGENDUM: c-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2014;116:1384–6.

Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, et al. GABA- producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil. 2017;29:1–14.

Jadhav K, Peterson V, Halfon O, Ahern G, Fouhy F, Stanton C, et al. Gut microbiome correlates with altered striatal dopamine receptor expression in a model of compulsive alcohol seeking. Neuropharmacology. 2018;141:249–59.

Van Kessel S, Frye A, Ahmed O. E-G, Castejon M, Keshavarzian A, Aidy S, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun. 2019;10:1–11.

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128– 33.

Borre Y, Moloney R, Clarke G, Dinan T, Cryan J. The Impact of Microbiota on Brain and Behavior: Mechanisms & Therapeutic Potential. In: Microbial Endocrinology: The Microbiota- Gut-Brain Axis in Health and Disease. 2014. p. 373–403.

Desbonnet G, Clarke L, Shanahan F, Dinan T, Cryan J. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19:146–8.

Neufeld K, Kang N, Bienenstock J, Foster

J. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23:255-e119.

Zhao Y, Yang G, Zhao Z, Wang C, Duan C, Gao L, et al. Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav Brain Res. 2020 Oct 1;395:112853.

Karen C, Shyu DJH, Rajan KE. Lactobacillus paracasei Supplementation Prevents Early Life Stress-Induced Anxiety and Depressive- Like Behavior in Maternal Separation Model-Possible Involvement of Microbiota- Gut-Brain Axis in Differential Regulation of MicroRNA124a/132 and Glutamate Receptors. Front Neurosci. 2021 Aug 31;15:1115.

Zijlmans M, Korpela K, Riksen-Walravena J, de Vos W, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–45.

Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry. 2017;16(14).

Abildgaard A, Elfving B, Hokland M, Wegener G, Lund S. Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology. 2017;79:40–8.

Steenbergen L, Sellaro R, van Hemert S, Bosch J, Colzato L. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–64.

Majeed M, Nagabhushanam K, Arumugam S, Majeed S, Ali F. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, doubleblind, placebo controlled, multi- centre, pilot clinical study. Food Nutr Res. 2018;62(1218).

Qin Xiang N, Peters C, Yih Xian C, Lim Yutong D, Wee-Song Y. A Meta-Analysis of the Use of Probiotics to Alleviate Depressive Symptoms. J Affect Disord. 2018;228:13–9.

Liu R, Walsh R, Sheehan A. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102:13–23.

Huang R, Wang K, Hu J. Effect of Probiotics on Depression: A Systematic Review and Meta- Analysis of Randomized Controlled Trials. Nutrients. 2016;8(483):1–12.

O’Mahony M, Feliceab V, Nally K, Savignac H, Claesson M, Scully P, et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience. 2014;277:885–901.

Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–7.

Grundy L, Erickson A, Brierley S. Visceral pain. Annu Rev Physiol. 2019;81:261–84.

Castelli V, Palumbo P, D’Angelo M, Kumar Moorthy N, Antonosante A, Catanesi M, et al. Probiotic DSF counteracts chemotherapy induced neuropathic pain. Oncotarget. 2018;9(46):27998–8008.

Guo R, Chen L, Xing C, Liu T. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br J Anaesth. 2019;123(5):637–54.

Dai Y, Wang H, Wang X, Kaye A, Sun Y. Potential Beneficial Effects of Probiotics on Human Migraine Headache: A Literature Review. Pain Physician. 2017;20:E251–5.

de Roos N, Giezenaar C, Rovers J, Witteman B, Smits M, van Hemert S. The effects of the multispecies probiotic mixture Ecologic®Barrier on migraine: results of an open-label pilot study. Benef Microbes. 2015;6(5):641–6.

Zurita, María; Cárdenas, PAÚL; Sandoval M, Caridad Peña, María; Fornasini, Marco; Flores, Nancy; Monaco M, Berding, Kirsten; Donovan, Sharon; Kuntz, Thomas; Gilbert, Jack; Baldeón

M. Analysis of gut microbiome, nutrition and immune status in autism spectrum disorder: a case-control study in Ecuador. Gut Microbes. 2019;

Magistrelli L, Amoruso A, Mogna L, Cantello R, Pane M, Comi C. Probiotics may have beneficial effects in Parkinson’s disease: in vitro evidence. Front Immunol. 2018;10(969).

Keshavarzian A, Green S, Engen P, Voigt R, Naqib A, Forsyth C, et al. Colonic Bacterial Composition in Parkinson’s Disease. Mov Disord. 2015;30(10):1351–60.

Scheperjans F, Aho V, Pereira P, Koskinen K, Paulin L, Pekkonen E, et al. Gut Microbiota Are Related to Parkinson’s Disease and Clinical Phenotype. Mov Disord. 2014;00(00):1–14.

Tamtaji O, Taghizadeh M, Kakhaki R, Kouchaki E, Bahmani F, Borzabadi S, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo- controlled trial. Clin Nutr. 2018;1–5.

Agencia Nacional de Regulación Control y Vigilancia Sanitaria. Normativa Sanitaria para Control de Suplementos Alimenticios. Registro Oficial 937 de 03-feb-2017; 2018 p. 6–15.